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 Abstract 
 
In a study of fundamental rest mass quanta which models the generation of discrete 
waveform/particles as a local oscillatory function of an expanding inertial spacetime 
continuum, beta decay constitutes the propagation of a portion of the energy and power 
of the characteristic fundamental oscillation beyond its boundaries as the discrete 
waveform of the electron.  The expansion of spacetime results in a drop in its linear 
inertial density over time that is equal to a drop in its mechanical impedance over 
distance, where time and distance are related by the speed of wave propagation.   This 
drop produces a change in wave force at the boundary of the fundamental, resulting in a 
wave transmission recognized as the electron and concomitantly in a frequency change 
for the fundamental from that of the neutron to that of the proton.  The value of this 
change in force can be quantified as the rest mass energy of the electron divided by its 
rest angular wavelength, i.e. its reduced Compton wavelength, and the corresponding rate 
of change in the linear inertial density/mechanical impedance is shown to be equal to the 
Hubble rate, thereby coupling beta decay to the cosmic expansion rate which is shown to 
be exponential. The derivative of the fundamental oscillation wave force with respect to 
the expansion stress is shown to be the basis of quantum gravity.  The Planck scale is 
shown to be a differential scale, and implications for the cosmic age are investigated. 
 
 
 Exposition 
 
We start our discussion with the basic mass-energy equivalence equation of relativity, 
which is stated in an unconventional manner, in order to isolate the mass component on 
the left side, as 

 
2

1
m

c
 E , (0.1) 

 
where c is the presumably invariant speed of light in vacuo as 

 
dx

c
dt

  (0.2) 

 
It is important to state that while mass is customarily treated as a bulk or volumetric 
density property of matter, it is phenomenologically an expression of a linear resistance 
to a change in momentum of a body, particle or wave mechanism.  It therefore has the 
possibility of vector field representation.  By extension, it can have tensor field 
representation, since a massive particle effectively redirects motion from a straight linear 
path, i.e. it curves that path for a point particle and can diffuse or concentrate wave 
motion.  Since such tensor field can be decomposed into various vector components, our 
primary treatment of mass will be as the displacement integral of linear inertial density.  
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The statement for the inherent or spin energy, , of a quantum, q, is Planck’s quantum 

of action, , times its angular frequency, 
qE

 q , or 

 qE q  . (0.3) 

 
Here the angular frequency is the speed of light divided by the quantum’s angular 
wavelength, i.e. its reduced Compton wavelength, , as  ,C q

 
, ,

q
C q C q

c c 
 


. (0.4) 

Yet again it is the speed of light times the angular wave number, q , where the angular 

wave number is the inverse angular wavelength, 

 
,

1
q q

C q

c c  


. (0.5) 

 
Substituting (0.3) into (0.1), we see that the mass of the quantum is equal to the quotient 
of the invariants  and c times the wave number 

 
2

1
q qm

c c q  
 , (0.6) 

where  is the value of the invariant action, S, of the oscillation. 
 
With respect to this quotient, while the action, S, is generally presented as the time 
integral of the Hamiltonian or total energy of the quantum, it can also be cast as the 
displacement integral of an impulse, J, over the distance, f i fx x x , of an interaction 

of particles and/or fields, according to Maupertuis’ principle as 

    
   

2f f f

i i i

x x x f
f fx x x f

f f

m
S x d t x d d m

t t
         

x
J x F x x x x  (0.7) 

where the impulse is the time integral of the force, F, of the interaction 

  
 

2 

2
 

f

i

t f
ft

f

m
t dt t P

t

 
    

 


x
J F    (0.8) 

 
so that the angular momentum quantum equivalent is the invariant 
 
 S   . (0.9) 
 
Analogously for the time integral over the same impulse we have the value, t, (tav), 
which is of units mass-displacement, 

    
  21

2  
   

f f

i i

t t

f ft t
t dt t t dt t m    t J F F fx  (0.10) 

so that if the velocity in the last term of (0.7) is the speed of light, then t is also a 
fundamental invariant and the last term of that equation can be rearranged according to 
the relationship 
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c

t


 (0.11) 

and (0.6) is 
 qm q t . (0.12) 

Therefore, we can rephrase (0.1) for a quantum rest mass particle as  

 
2

1
q c

c q t t . (0.13) 

 
The economy of this approach is that the various dynamic properties of the particle can 
be expressed in terms of the powers of a characteristic frequency and wave number, a 
decidedly wave representation, as functions of a time independent base.  Using the Euler 
convention, in which each order of differentiation for displacement and time is effected 
by multiplying by the orthogonal sense, i, times the angular wave number and 
frequencies respectively and each order of integration, by dividing by those parameters, 
substituting (0.5) with some rearrangement, differentiates (0.13) and gives 

 2
2

1
q c

2
q t t . (0.14) 

Since  

  
2

22
2

i
x

  
  


 (0.15) 

and 

  
2

22
2

i
t

  
  


 (0.16) 

and the senses on each side cancel, this effectively makes a second order derivative with 
respect to displacement on the left and time on the right.  This is equivalent to the 
familiar linear wave equation for an ideal string under tension, with the inclusion of the 
inertial constant to each side of the equation as 

 
2 2

2 2

1
2x c t

  


 
t t . (0.17) 

 
Dimensionally, the left term in (0.14) and in (0.17) is a linear inertial density, 0 , and the 

right term, exclusive of the inverse wave speed squared, is a force, 0 , in this case the 

tension force in a wave bearing medium or 

 2 2
0 0 02

1 1

c c 02
    t t   (0.18) 

Here the subscript noughts indicate the selected values as fundamental characteristics of 
that medium.  Hence, 0 , represents a fundamental or resonant frequency of the medium 

and , the corresponding wave number, and the fundamental localized oscillation or rest 

mass quantum, if any, corresponding to that resonant condition would be represented as 
0

 0 0 02

1 1
m c

c c
   t t 02

E . (0.19) 
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Thus the quantum application of the central equation of relativity is shown as the 
expression of an underlying classical wave ontology.  For this to viable, we must assume 
some wave mechanism for a three spatial dimensional wave that maintains a wave 
boundary or system of nodes over time to prevent dispersion of the wave energy.  It is the 
nodal structure of such a model that is recognized as the quark structure of the standard 
model, that is quark equals node/anti-node.  Such nodes and anti-nodes are inseparable, 
necessarily confined to the same wavelength, as described by the concept of asymptotic 
freedom of that model. 
 
With such assumption, the inertial density for such fundamental quantum remains stable 
over time, that is the inertial density of the wave bearing medium within the boundaries 
of the quantum waveform remains constant, here expressed as the ratio of mass to 
wavelength,  

 0
0

,0C

 
t


, (0.20) 

with the corresponding related wave force expressed as 
 2

0 0  t . (0.21) 

This is so even within the context of an expanding wave bearing continuum, i.e. an 
expanding spacetime.   
 
Though the density in (0.20) expressed as mass per angular wave length remains 
constant, that (1) density and (2) the corresponding angular wave number expressed in 
terms of some external length standard or rod, 0x , i.e. a meter or some other arbitrary 

measure, would be expected to decrease and increase respectively according to the 
expansion rate of spacetime.  Thus, in a condition in which time t2 follows time t1 and 

02 01x x , the fundamental inertial density of spacetime decreases over time 

 01 01
01 02

01 02x x

    
t t

 (0.22) 

while the angular wave number, expressed in terms of some length standard that is 
current and held to be invariant over time increases non-linearly, 

 01 01 02 02

01 0 0 02x x

   
 

  
t t

. (0.23) 

This change in the wave number with respect to a standard is equal to the difference in 
the frequency squared divided by the square of the wave speed, relating this expression to 
(0.18) 

 
22 2

02 01 0 0
2 2 2 2

0 0 0 0x x x c t c

       
    . (0.24) 

Note that the second order change of the wave phase in the middle term indicates an 
accelerating change in phase count arising from a linear change in spatial extension 
which can be represented as a vector field.  The wave number change in this context 
represents a strain in the spacetime continuum, , outside the boundary of the oscillation, 
assuming a constant mass/energy density within the boundary of the wave. The ratio of 
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this change with the square of the standard, when interpreted as a cross-section, indicates 
a related stress component which can be represented by a dyadic or tensor field. 
 
In the next to last term, the same change is shown to be an accelerating change.  Note that 
the speed of light squared simply normalizes the time and displacement standards, thus in 
a natural system equals 1.  The acceleration with respect to spacetime expansion is linear, 
that is straight line, but with respect to a rest mass oscillation it represents an angular 
acceleration, i.e. a change in angular velocity and frequency, thus spin energy, and by 
virtue of (0.1) and (0.19), an increase in mass and inertial density with respect to an 
assumed to be invariant standard, 0x .   

 
As a spatial strain, x , with respect to the left hand side of (0.18) we have, 

 
2
0

01 01 012
0

x

x

x
   

    (0.25) 

and as an acceleration or time strain, t , with respect to the right hand side we have, 

 
2

01 0 01 01
2 2 2

0
t

t

c t c c2

   
 


. (0.26) 

The change of 0  due to the spatial strain and the change of 0 due to the time strain 

reflects the expansion rate of spacetime, Xe, which we might surmise that it is equal to the 
Hubble rate, H0, or  
 0eX H . (0.27) 

 
This expansion rate equals the decrease in the spacetime inertial density (outside any 
wave boundaries) with respect to time and the decrease in the mechanical impedance, 0Z , 

of that spacetime with respect to displacement as  

 0 0 1
e

d
X d

dt c cdt dx

     
 

0dZ
 (0.28) 

where the impedance is the ratio of the wave force to the wave speed of 

 0
0Z

c


 . (0.29) 

In terms of the inertial constant, we have the expansion rate expressed in terms of a space 
strain and time on the left and in terms of a time strain and space on the right, 

   
2 2 2
0 0 0 0 0

2

1
, ,e x e t

d d d d d X t X
dt c dt cdx dx

         
t t t

t x . (0.30) 

 
To check this conjecture concerning the Hubble rate, we need some gauge of the change 
in wave force, 0d , where the fundamental wave force, 0 , must of necessity be equal to 

the stress force across the spacetime fabric, since it is the localized oscillation of this 
stress that is an individual fundamental quantum.  We might look, therefore, to the 
neutron as a fundamental oscillation of the tensor field (or three dimensional spinor field) 
of spacetime given by 2

0m c 0  , and to the phenomena of beta decay as an instance of 

transmission of a portion of that oscillation’s power and energy beyond the neutron wave 
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boundary in response to a drop in the inertial density and mechanical impedance of 
spacetime with cosmic expansion.  The wave force of the electron, e , then is a function 

of the change in impedance times an invariant wave speed as 
 
  (0.31) 2 2

0 0e e d d cd      t t 0Z

 
and we would expect the expansion rate to equal 

  
2

0 0 0
2 2

1
, e

e t

dZ dZ d
X x

dx cdt c dt c dt

     
t 1

. (0.32) 

Using the CODATA [1] values for electron mass and its reduced Compton wavelength, 
and  and c to get the inertial constant, gives a value for the differentiation of the 
electron spin energy with respect to its angular wavelength of  



 
2

2
0

,

0.2120136...e
e e e

C e

m c
d E N , (0.33)      t


and an expansion rate, using (0.25), of 

   180
02

1 1
2 35896879 10e x x

d
X t

c dt dt


      x m m s, . ... / / . (0.34) 

 
This number, the rate of change in a meter unit of spacetime, per second, times the 
number of meters per megaparsec, gives the expansion rate in terms of the Hubble 
constant or 

  (0.35)  22
0 3 08572 10 72 791 17172. / , . /eH X x m mps m s  /mps

 
A study by Ron Eastman, Brian Schmidt and Robert Kirshner in 1994 and quoted in 
Kirshner’s recent book, The Extravagant Universe, found an H0 = 73 km/s/mps +/- 8km 
[2] and an article in the Astrophysical Journal, 533, 47 - 72, (2001) by Freedman, W. L. 
et al. gives the final results from the Hubble space telescope key project to measure the 
Hubble constant as H0 = 72 km/s/mps [3].  There are  meters per megaparsec. 221008572.3 x
 
Note that the conventional measure of the Hubble rate is in terms of a velocity per scale 
of distance or per megaparsec, and carries the connotation of an explosion or movement 
of celestial bodies apart from each other, whereas this interpretation, which is 
mathematically equivalent, is of an expansion or strain of spacetime itself with a 
concomitant change in any distance metric which is generally held to remain fixed. 
 
We would now like to see if the derivation of gravity can be modeled as a function of this 
same expansion.  We would anticipate the presence of a tensor field at the boundary of 
the fundamental oscillation given above, in response to the expansion of spacetime.  
While that boundary can be visualized as generally spherical, we can analytically 
superimpose a concentric unit cube within that boundary with no loss of rigor.  If that 
cube represents the total stress in a 3 dimensional space which is a component of a 4 
dimensional expanding spacetime, the 6 centripetal tension force vectors with scalar 
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representation, 0 , acting on that cube as a function of the 4-stress of spacetime, , 

operating through one of the diagonals,
0T

1 gives the following relationship,  

 0 0
0

0 0

3 6 3 6 3T 0 3 0f f
     
   (0.36) 

 where 0f  is a unit tension stress, 3  is the factor relating the 4-stress and 3-tension stress 

components, and is a unit cross-sectional area, where 0

 . (0.37) 2 2
0 0 C n    ,

 
With some rearrangement of (0.36), we have 

 1 0
3 0

0

T
  


, (0.38) 

with the total derivative for an invariant being 0T

 1 0 0 0
3 0 0 0 0 02

0 0 0 0

1
0

T T
dT d d d d

  


  
     
   

 . (0.39) 

 
Separating and inverting this function we have the two following differential equations, 
the first of which is straight forward,  

  1 1
0 3 0 0 3 0 0d dT        2dT  (0.40) 

and the second one expressing various parsings of interest, especially those in which the 
tension stress force is removed from the equation,  

 

 

2
1 0 0

0 3 0 01 2
0 3 0 0

2
0 0 0 0     ln ln

d dT dT
T T

d T d T


 








 
      

   

0
0dT
 (0.41) 

 
Equation (0.40) represents the centripetally directed tension force at the boundary of the 
quantum oscillation resulting from the expansion stress.  It is the force of quantum 
gravity or a gravitational quantum, , and judging from our earlier comment 

concerning the neutron as the fundamental or resonant oscillation, should be equal to the 

neutron reduced Compton wavelength squared divided by 

0dG

6 3 , or 
 
 . (0.42) 1 1 2 1

0 3 0 0 3 , 3 0 4.244... 10C ndG dT dT T d x N           33

 
A quantum formulation for Newton’s Gravitational Law is  
 

1 2

2
1 2 0m m k M MF n n n dG   (0.43) 

 
where Man  is the number of fundamental unit masses in each of two aggregate bodies, 1 

and 2, and is the distance of separation of the centers of the two bodies in multiples of n
                                                 
1 Note that it is the vertices of an n dimensional figure that defines its position and extent, so that exclusive 
of rotation, extension of any two cubic vertices along a common diagonal suffices to redefine the cube. 
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the fundamental unit value of .  An aggregate mass is the product of the number of 

quanta in that aggregate times the fundamental unit of mass, , or with rearrangement 
0

0m

 
0

a
Ma

M
n

m
  (0.44) 

and the separation, R, of the two bodies of mass is the product of the number of unit 
lengths in that separation and the fundamental quantum unit length, or 

 
0

r

R
n 


. (0.45) 

 
Substituting equation (0.44) and equation (0.45) into equation (0.43), gives  

 
1 2

2
01 2

02 2
0

M M k

M M
F dG




R m


 

 


 (0.46) 

 
Assuming that the gravitational quantum is equivalent to the formulation from equation 
(0.40) and substituting from its middle term, gives the following, in which the stress 
differential is normalized in its relationship to dG0 as dT0 = 1, 

 
1 2

4
1 01 2 1 2

23 02 2
0

M M k N

M M M M
F d G

R m
  

  
 


T

R
 . (0.47) 

 
In keeping with earlier development, we restate the relationship between the above 
postulated quantum mass, m0, and length, , the latter stated as the reduced Compton 

wavelength,  
0

 1
0 0

0

m
c

 
t 


. (0.48) 

We substitute from equation (0.48) into the bracketed term of equations (0.46) and (0.47), 
and get 

 
4 6

1 110 0 3 2
02 2

6.673198... 10NG d dT x m kg s  0 3G  
t t

 
, (0.49) 

where the CODATA value is given as 116.6742(10) 10x   showing that Newton’s constant 
is not a free parameter in this model. 
 
Since (0.21) is the wave force of the fundamental oscillation where 
 2 2

0 0 n Cm c  1
,n

 t   (0.50) 

we can solve for the second half of the above total derivative at (0.41) for the change in 
unit cross-section and find that it is equal to the Planck area,  

 
 

2

0

d d

G

1 20 0
0 3 0 0 0 0 0

0 0

1 7
3 0

ln ln

       2.6116... 10

T dT d T
T

T d x m





 

 

 
      

     

0

0 2
Pl

d T  
 (0.51) 
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This indicates two important developments, first the logarithmic nature of the change in 
the expansion stress, therefore of the cross-section, and second the fact that the Planck 
scale represents a differential area and not a measure of an absolute scale.   
 
With this development, we can get the spin energy density/stress, T0, of the neutron, as 

 0 0
0 3

0 0

dG
T

d d
 0dT


 

 
 (0.52) 

and finally 

 
2 2

38 20 0 0 0
0 3 3 3 33 3 2

0 0 0 0

1.6887... 10 /
E m c

T x
        


t

  
N m . (0.53) 

Note that the last term of (0.53), with substitution from (0.42), rearrangement and 
inversion gives the inverse ratio of the wave force which is the basis of the strong force, 
and its differential, which is the basis of gravity, as a pure number 

 390 0
0

0 0

ln 5.9215... 10
dT dG

d T x
T 

   . (0.54) 

With respect to the Planck area, substitution from the above development gives its 
familiar representation 

 

2 2
10 0

0 3 0 3 02 2 4 2 2 4
3 0 0 0

2

4 3
       N N

d dT dT
c

c
G G

c c

  
  




 
       

   

t t

t





2
0 0

c
 (0.55) 

 
Taking the square root of (0.55), we can show the Planck length as a differential length 
value, as 

 
1
2 35

0 0 0 0ln 1.6161... 10Pld d d T l x       m . (0.56) 

 
 

Cosmological Implications 
 
Basic to our discussion is the assumption that spacetime is expanding relative to our local 
frame of reference.  This means that over time a local fixed unit length standard becomes 
an ever decreasing proportion of some linear measure of the cosmic extent.  If we project 
backwards in time, we can assume that at some point that measure of cosmic extent was 
equal to the current local length standard or unity.   
 
The current concept of a big bang start of cosmic spacetime expansion implies an initial 
condition of maximum inertial density, possibly infinite, which decreases with the 
expansion of space from an extremely small volume, possibly zero, i.e. from a 
singularity.  Instead of emergence from a singularity, the space component of spacetime 
can be modeled as a boundary on the next higher dimensional manifold, itself under 
expansion, analogous to a circle drawn on the surface of an expanding balloon.  
Alternately, we might imagine a spherical balloon of fixed size with a circular wave 
emanating from one spot, widening in diameter as it approaches an equator before 
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shrinking again as it nears the antipode.  An analogous inertial spacetime oscillates on a 
cosmic scale between a maximum density and rarification, between a maximum 
compression and maximum extension.  The fact that the expansion appears to be 
accelerating indicates that the expansion rate is best understood exponentially. We can 
then take the condition of maximum density as unity instead of as a singularity, and 
gauge any expansion with respect to that unity for 0 and as inversely related to the 

associated increase in stress T0 due to expansion according to equations 
0

(0.51) 
and (0.56).    
 
The current expansion factor, exp, the ratio of the current fundamental neutron scale to 
the Planck length, is equal to the inverse square root of the differential natural log of the 
expansion stress,  

 
1 190

exp 0
0

ln 1.29952... 10d T x
d




  



 (1.1) 

As this expansion is at an exponential rate, in terms of doubling from an initial condition 
of maximum density equal to the linear inertial density of the neutron scale, 0, cosmic 
expansion, Cx, is 

  (1.2)   18 11
expln 2 9.00764... 10  light seconds 2.8544... 10  light yearsxC x x  

Note that the last term would indicate, if interpreted as a straight line increase at the 
speed of light, an expansion age of the cosmos of 285.44 billion years. 
 
As developed above, the expansion rate is 
 18

0 2.35896... 10 m seX H x     (1.3) 

If we interpret this as a straight line expansion rate from an initial singularity, inverting 
would give the age of the cosmos in current units as 
  (1.4) 1 13.433 billion yearseX  
However, if the Hubble rate is exponential or compounding, the following gives the 
Hubble time, H, as a time in current units for a doubling in spatial linear extent, or 
  (1.5) 1ln 2 9.311 billion yearsH eX  
The product of the expansion rate and the expansion factor is the number of doublings or 
  (1.6) exp 30.655... doublings 285.43 billion yearseX   
 
Following this logic, if the wavelength of the cosmic microwave background is 
approximately 3.3mm and indicates an expansion along with spacetime from a primal 
epoch of beta decay as gauged by the electron Compton wavelength, ,C e , dividing the 

natural log of such expansion by the natural log of 2 gives the number of doublings based 
on those parameters or 

  
9

1

,

.0033 ln1.360... 10
ln ln 2 30.34... doublings 282.5 billion years

ln 2C e

x


 
    

 
 (1.7) 

in very close agreement with equation (1.6). 
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This observation indicates that , related to the reduced electron Compton wavelength, 

, by the ratio 0.000543…, remains stable as spacetime and the CMB expands and 

indicates that such quanta did not have a geometry of the Planck scale at an early epoch, 
which instead of starting from a singularity with all the physical dilemma that entails, 
started expansion from a maximum finite density.  The Planck length, then, is the ratio of 
the neutron reduced Compton and the cosmic extension from an initial compact condition 
of maximum density, and continues to decrease with expansion. 

0

,C e

 
Alternately, but not contradictory, if we think of the cosmic extent of 3-space as a fixed 
unit, what appears mathematically from a local perspective as expansion is from the 
universal perspective a process of regional and local concentration of inertial density.  
With respect to our analogy of the fixed balloon above, the linear (and area) density of 
the balloon in the absence of a wave is invariant over the surface of the sphere, but a 
wave moving over its surface creates a density differential at the wave front, increasing 
as it approaches a pole and anti-pole and decreasing as it approaches an equator.   
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