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Construction of the Natural Numbers from a Real Exponential Field 
 
Consider the following geometric construction. 
  

  
 
Step 1 – Construct a unit circle, that is a circle with unit diameter, d, and unit π 
circumference, c.  Designate the unit base number, Φ, and the exponential unit, . 
Designate the inverse unit base number, φ, and the inverse exponential unit, 

0Φ
0φ . Thus the 

magnitude of the diameter, which cannot be negative (and where the absolute brackets 
are added here for emphasis but will later be left off unless required for clarity), is 
 0d 0φ= Φ =  (1.1) 
It is noted that as exponential bases, these base numbers cannot be negative, though their 
exponents can be. We might also imagine that their exponential functions, 

 or ( ) xy f xΦ = = Φ ( ) xy f xφ φ= = , can be applied to a directional vector of any sense.   
 
Step 2 – Extend two tangent line segments of unit length, orthogonal to and in opposite 
directions from opposing ends of the diameter.  Construct a line segment joining the 
distal ends of the tangents, the hypotenuse, h, of a right triangle of sides  and 

.  The square of the hypotenuse is 

0Φ +Φ0

0Φ
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 ( ) ( )
0 0 0 0

2 0 0 0h
Φ +Φ Φ +Φ

= Φ +Φ + Φ  (1.2) 
 
We will call 0 0φΦ = , the number 1 and 0 0 0 0φ φΦ +Φ = + , the number 2.  Note, 
however, that  

  (1.3) ( ) ( )
0 0 0 0

0 0 0 01  does not necessarily equal 1
φ φ

φ φ
Φ +Φ +

= Φ = Φ = = 2

in qualitative terms, since the first terms are linear intervals or spans of the real number 
line, while the second terms could represent a unit area, a span of the real number plane.  
Thus , as an exponent can denote an orthogonal condition, or a “square” 
number.  It conveys a geometric component to the use of exponents via the Pythagorean 
theorem.   

0 0 2Φ +Φ =

 
With respect to the extent of the unit circle above, then  
 ( )0

cc π π= Φ =  (1.4) 
while the extent of the sphere, s, with c as its extremal cross section is 
 ( )20

ss π π= Φ =  (1.5) 
and it is obvious that, while the magnitudes of c and s are equal, qualitatively  
 c sπ π≠ . (1.6) 
 
The above construction is equivalent to a rotation of 0Φ about each end of the diameter, 
each through an angle of 2

π+ .  Label the tangents by their magnitudes, the left tangent, 
0φ , and the right tangent, 0Φ .  Thus the hypotenuse can be thought of as a unit 

diameter stretched between and connecting the rotated ends of the tangents.  Consider the 
following identity, in which the sense of the exponents indicates that these two terms are 
anti-parallel.  This follows conventional use of imaginary exponents in which the sense of 
the exponent is rotational, where generally positive designates counterclockwise and 
negative, clockwise.   
 0φ 0−≡ Φ  (1.7) 
Here the imaginary notation in the exponent is masked, since a rotation of 2

π+  is 
represented 
 i+Φ  (1.8) 
and since the powers of exponents are additive, ( )2i i i+ + + −Φ = Φ = Φ  
 
Instead as of rotation of diameters, we can also effect this construction with a rotation of 
two opposing, centrally directed radii, r, by moving their central points in opposite 
directions, orthogonally along the path of the resulting hypotenuse. We then have the 
condition of the dashed lines found in Step 3, which is the configuration of Step 2 rotated 
in the plane of the paper clockwise 0.4636476…radians.  We find the radii have doubled 
their magnitudes in transforming to resulting tangents.  The angle tangents of the distal 
vertices are correspondingly 1/2.    
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Step 3 – Centered at the intersection of the unit circle and the hypotenuse, adjacent to the 
tangent 0φ , construct another unit circle with its diameter tangent to the first circle.  The 

distance along the hypotenuse from this center to the vertex with 0φ  will be  

 
0 01φφ φ 1−Φ −≡ = Φ ≡ Φ  (1.9) 

and the distance from that center along the hypotenuse to the other vertex, with the 
tangent  0Φ   will be 

 
0 01 φ 1φ φΦ −Φ ≡ Φ = ≡ − . (1.10) 

We now have the following identity 
 ( ) ( ) ( )2 22 0 0 0 1 1h

2
φ= Φ +Φ + Φ ≡ Φ +  (1.11) 

 
 
Step 4 – Parallel to the hypotenuse and at the ends of the diameter of the second circle 
construct the tangents 1φ  and .  It is apparent from the above description that we have 
the following: 

1Φ

 2 22 1 5h = + =  (1.12) 

 1 1 5 1 0.618033989...
2 2

φ −= Φ = − =  (1.13) 

 1 1 5 1 1.618033989...
2 2

φ −Φ = = + =  (1.14) 

 
The above steps have created the base for an exponential, orthogonal expansion from a 
linear unitary condition.  From a most fundamental rational operation of division, 
dividing a whole, 1, into halves, or of multiplication, doubling of a unit or 2, involving 
the most fundamental ratio, 1/2, we have arrived at what some have termed the most 
irrational of numbers.  It is significant, however, that the primary triad of this particular 
rational group does not form a group under ordered addition, i.e. 
 a b c+ =  (1.15) 
where , since  a b c< <
 1

2 1 2+ ≠  (1.16) 
 
From another perspective, however, it is ½ and 2 which are the result of the rational 
operation of the bases Φ and φ, where 

 1φ =
Φ

 (1.17) 

This primary rational triad does form a group under ordered addition, since 
 1φ + = Φ  (1.18) 
which can be generalized using the base Φ to the ordered orthogonal addition 
 1 0− 1Φ +Φ = Φ  (1.19) 
and further, where q is any real number, to  
 1q q q 1− +Φ +Φ = Φ  (1.20) 
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In fact (1.17) comprises the only set of three numbers, where 

 ba
c

=  (1.21) 

that satisfies the condition of (1.15).  It is also of interest to our discussion that (1.17) as 
(1.21) is of the general form 

 
1
2

1
2

1 x
xx

= . (1.22) 

This implies that in some fashion, φ and Φ, respectively serve as surrogates for 
21 and 1 . 

 
From (1.7) we can see that changing the rotational sense of the base results in mirror 
symmetry, while changing the ccw and cw conventions results in an inversion or rotation 
of π of the whole system.   
 
This would be mildly interesting in itself, but when we add a third geometric dimension 
and generalize the linear powers of the base Φ, we make some compelling discoveries.  
By linear powers is meant a mapping of the exponential function of any base to the real 
number line.  By contrast, a geometric mapping of n-integer exponents maps to an n-
dimensional space, as indicated above.   
 
In the above development, h is presented as a stretching or augmentation of the length of 
a unit diameter, , for a unit π circle or 1-sphere manifold.  It is also the diameter of a 
unit π 2-sphere manifold embedded in a 3-D Euclidean space, as mentioned.  We could 
have drawn the steps shown on a unit square or 1-cube with an implied unit 2-cube in a 3-
D space, in which case Step 2 would depict a 2-cube collapsed across one set of 
diagonals, as a box flattened under foot.   

0Φ

 
We can therefore think of ( ) ( ) ( )1 1 0 0 1 1, ,  and φ φ− −Φ = Φ = Φ =φ −  as three bases of an 
orthogonal, exponential space.  The unit 3-D space thus spanned has the same volume as 
a unit cube or 13.  The magnitude of the vector sum of the three bases, however, instead 
of 3  as in the unit cube, in this case is 4 2= .  For the purposes of this development, 
we will stipulate that any augmentation of the bases is exponential and not by addition or 
multiplication, that the middle base will remain a unit base, and that the volume spanned, 
that is the product of the three components, remains 13. That is 
 0 1q q−Φ Φ Φ =  (1.23) 
For that case in which , this remains the standard unit cube. 0q =
 
We will further limit ourselves to the condition where an integerq n= = .  It is 
immediately clear that a negative integer simply reverses the bases φ and Φ.  We are 
interested in three orthogonal conditions, with two readings of each, as shown in the 
following diagram.  Condition b consists of b1, in which φ and Φ are parallel, b2, in 
which φ and Φ are orthogonal, and b3, the condition established by Step 4 above, in 
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which φ and Φ are anti-parallel.  Condition a consists of the projection of b1, b2 and b3 
into the plane normal to , giving us a1, a2 and a3 respectively.   0Φ
 

  
We are interested in the solutions for these 6 conditions for the values of n.  The table 
below gives the first few of these, where the 6 conditions are identified as follows: 
 na1 nφ≡ Φ −  (1.24) 

 ( ) ( )
1
22 0n nb1 φ

2⎡ ⎤≡ Φ − + Φ⎢ ⎥⎣ ⎦
 (1.25) 

 ( ) ( )
1
22 2n na2 φ⎡ ⎤≡ Φ +⎢ ⎥⎣ ⎦
 (1.26) 

 ( ) ( ) ( )
1
22 2 20nb2 φ n⎡ ⎤≡ Φ + Φ +⎢ ⎥⎣ ⎦
 (1.27) 

 na3 nφ≡ Φ +  (1.28) 

 ( ) ( )
1
22 20n nb3 φ⎡ ⎤≡ Φ + + Φ⎢ ⎥⎣ ⎦
 (1.29) 

We have the following sequence, where the integers shown are the square of a1, b1, 
etc…for Φ to the n, thus should be read “the square root of (the integer) is a1, b1, etc…”, 
for the first 13 integral values of n. 

n  a1 b1 a2 b2 a3 b3
0 0 1 2 3 4 5
1 1 2 3 4 5 6
2 5 6 7 8 9 10
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3 16 17 18 19 20 21
4 45 46 47 48 49 50
5 120 122 123 124 125 126
6 320 321 322 323 324 325
7 841 842 843 844 845 846
8 2205 2206 2207 2208 2209 2210
9 5776 5777 5778 5779 5780 5781

10 15125 15126 15127 15128 15129 15130
11 39601 39602 39603 39604 39605 39606
12 103680 103681 103682 103683 103684 103685

 
The bold figured values of a2 are (the square roots of) the even numbered elements of the 
Lucas series, starting at 0.  This gives the linear values or lengths of the hypotenuse 
developed above through the various orthogonal exponential transformations outlined 
above.  The square of these values therefore maps these integers to the real number plane.    
 
From this relationship we might create a numerical system on the Φ base,  
 ( )n

a b nΦ  (1.30) 
where n is the “decimal” place and the condition a or b might be indicated by a number 
or a sense sign, such as + = parallel, i = orthogonal, and - = anti-parallel, so that for n = 0 
 0 0

1 0+Φ = Φ =  (1.31) 
 0 0

1 1+Φ = Φ =  (1.32) 
 0 0

2 2iΦ = Φ =  (1.33) 
 0 0

2 3iΦ = Φ =  (1.34) 
 0 0

3 4−Φ = Φ =  (1.35) 
 0 0

3 5−Φ = Φ =  (1.36) 
 
Thus the number 1000 is variously represented, among other possibilities, as 

 
7 5 3 3 7 5 3 1 0

843 123 18 16 846 126 21 6 1
i i i + − − − − −Φ Φ Φ Φ = Φ Φ Φ Φ Φ

+ + + = + + + +
 (1.37) 

  
The significance of this and the reason for its development here is conceptual and related 
to number theory.  While the real number line is often represented as the “naturals” then 
by elaboration filled in with the “rationals”, then finally made continuous by filling in the 
gaps, here we start by using a decidedly “irrational” base to generate a real plane 
continuum, by squaring the length of the hypotenuse of our continually transforming 
radial legs, from which the integers and thereby the rationals emerge as a function of the 
orthogonal positioning of the legs.  This shows yet another geometric and orthogonal 
interpretation of exponentiation.   
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