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Abstract 

 

This analysis provides a geometric model, capable of being visualized in three spatial 

dimensions, of rest mass quantization as an emergent property of a classical spacetime 

continuum by way of a fundamental, locally discrete rotational oscillation that is a 

function of the exponential expansion stress of that spacetime.  A non-Minkowski 

spacetime is developed in which time is modeled as a local, compactified dimension 

exhibiting Lorentz covariance and in which fundamental quantum rest mass, 0m , and 

spin energy, 0E , is a measure of the angular wave number, 0κ , and angular frequency, 

0ω , of a resonant oscillation.  Quantum gravity, 0dG , arises naturally as the quantum 

differential of the transverse wave force of this oscillation with respect to a change in 

spacetime expansion stress, 0dT .  The Planck area, 0dΑ , is shown to be the differential 

of a fundamental unit area with respect to that change in expansion stress.  The strong 

interaction is the operation of that wave force between two or more quanta within a 

shared, local wave force domain.  This quantum state is expressed as a modification of a 
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chargeless extreme Kerr metric with an oscillation at resonant frequency of the φ 

coordinates imposed by continuity conditions which prevent coordinate entanglement.  

Such oscillation results in a rotation of the wave phase at the same frequency.  It thereby 

describes a physical spinor, constituting the quantum magnetic field and the property of 

½ spin, and isospin in the presence of other quanta.  The ergosphere of this quantum 

metric is the wave force domain of the strong interaction. From a universal bookkeeper 

reference frame, the fundamental quantum scale is the neutron scale given by the neutron 

reduced Compton wavelength. Finally, the analysis indicates that cosmic expansion is 

accelerating exponentially from a condition of maximum density, is presumably cyclical 

and that in terms of the current time scale, it is approximately 285 billion years into the 

current expansion cycle.  General relativity requires the following refinement in this 

model; spacetime acquires the property of inertial density as a potential energy density 

independent of any energy or rest mass quanta, has an exponential expansion rate, and 

admits torsion that prevents the orientation entanglement condition.  

 

1 – Kinematics and the Geometrization of Time 

 

“Mechanics . . . is generally regarded as consisting of kinematics and dynamics.  

Kinematics . . . is the science that deals with the motions of bodies or particles 

without any regard to the causes of these motions. Studying the positions of 

bodies as a function of time, kinematics can be conceived as a space-time 

geometry of motions, the fundamental notions of which are the concepts of length 

and time.  By contrast, dynamics, . . . is the science that studies the motions of 
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bodies as the result of causative interactions.  As it is the task of dynamics to 

explain the motions described by kinematics, dynamics requires concepts 

additional to those used in kinematics, for “to explain” goes beyond “to 

describe”.” [1] 

 

To take up the task set forth by Max Jammer, we might look for explanation of dynamics 

in a greater understanding of those “concepts additional”, chief of which is mass; in 

particular we might seek “to explain” mass through a more detailed description of the 

kinematic concepts of length and time.  We would seek to find a definition of mass as a 

measure of length and/or time.  In order to properly undertake such an investigation, we 

must first examine the concepts of length and time.   

 

Length is a concept used to quantify the apparent spatial separation of entities, where 

entity might be any distinction within the field of observation, including the two ends of a 

rod.  It is of interest that the magnitude of time is also referred to as a length.  We easily 

conflate measures of separation in time and in space with one term, length, and to 

contrast them as a ratio, speed.  However, there is no more than a conventional preference 

for the ordering of that relationship, as a mile in four minutes and a four minute mile 

despite a numerical difference indicate the same physical change, the race speed or  

 1 mile 4 minutes 1 space or time interval
4 minutes 1 mile 1 time or space intervalracec = = = . (0.1) 

 

In a similar fashion, we can state a number of times per time or of lengths per length, i.e. 

a frequency in time or space, as 
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 4 flashes 3 feet or 
1 second 1 yard

,t lf f= = . (0.2) 

 

A length of spatial or temporal separation can be termed an interval between entities or 

events, as in general relativity.  A single entity can have multiple events, as with a 

flashing beacon, and a single event can have multiple entities, as with a “big bang”, as 

well as multiple perceptions of the event.  This does not mean that time and distance are 

the same qualities by virtue of the use of this common reference term, but it suggests we 

might equate them mathematically with some universally acknowledged gauge.  Thus the 

speed of light in vacuo, held to be a maximum, is used to gauge a length of time, 

converting it to a length of distance.  We might also use as our gauge some minimum, for 

example the Hubble rate, approximately 7.87 x 10-27 times smaller than the speed of light. 

 

The use of the same term for a separation by time and by space can be misleading.  

Spatial length is a primary concept, understood by common experience.  In simplest 

manner, its magnitude is determined by holding two objects in proximity, one of which is 

a standard and the other of which is a test object.  We might also consider temporal 

length as a primary concept, however, we tend to define time quantitatively in terms of a 

primary spatial length component of an otherwise cyclic or periodic concept, as a 

comparison of the length rate of change along the circumference of a clock face 

contemporaneous with some other change.   

 

Taking a hint from the nomenclature of simple arithmetic, we state that a velocity is some 

translational displacement divided by the number of times some cyclic distance is 
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transited at a constant rate, i.e. the number of times a clock hand tip transits a 

circumferential distance on the clock face designated as a unit standard interval.   In the 

final analysis velocity is a comparison of two physical lengths, where the customary 

practical human standard is gauged to correspond with the tangential distance the earth 

rotates at the equator during (approximately) 1/86,400th of its diurnal cycle, i.e. a second.   

 

The reader may object that it is not the length transited, but the angular speed that marks 

out time, pointing to the cyclical property with which it is customarily endowed.  For a 

fixed reference frame, all 60 second analog clocks move ideally at the same angular rate, 

resulting in a varied velocity at hand tip that is a function of the hand length.  We might 

envision that this velocity is limited by the speed of light, and for an ideal clock we 

stipulate that the length of time taken for light to travel from the center of the clock face 

to the end of the hand, be it hour, minute, second, nanosecond or yoctosecond, is equal to 

the length of time for the tip of the hand to travel the same distance tangentially about the 

face for one radian.  Thus its angular frequency, ω, will be inversely related and gauged 

to the length of its arm, r, or abstractly to an angular wave length, , and consequently 

directly related by the angular wave number, κ, by the constant velocity, c, given by the 

familiar relationships 

 d c c c
dt r
θω κ= = = = . (0.3) 

Some rearrangement and integration of the angular measure, using a normalized value for 

the speed, c = 1, gives 

 ( )1 1

 0 0
 r d c dt r t

ω
θ

−

= ∴ =∫ ∫ ,  (0.4) 
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If we treat r as a 3-vector, r, (calling the clock arm r), its origin at the center and its 

extension point at the circumference of the clock, it is clear that dθ is orthogonal to r.  

The unit integral of dθ, along with the orthogonal sense, i, is thus an operator that 

transforms r orthogonally into an instant tangent vector, ct, that carries the tip of r with it, 

rotating r about its origin as 

 r tic=  (0.5) 

for which the scalar form, leaving the i for emphasis, is 

 r ict= . (0.6) 

Such orthogonality is what a dimensional relationship between space and time demands.  

The c is simply a reminder that r and t are normalized, and can be left out by using the 

ought subscript to indicate unit values in 

 0 0i≡r t . (0.7) 

Since r is radial and t is tangential, it is immediately apparent that in addition to being 

orthogonal to a spatial length, r, time is locally cyclical.  After a period of 2π it will 

return to its starting point and continue to cycle at the invariant rate or angular frequency 

 0
0

d c
dt r
θω = = . (0.8) 

We can rotate and translate r0 to any direction and place in three dimensional space, and 

t0 will remain extended orthogonally from the instant point of r0, as in Time Scale 1. 
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Time Scale 1

Figure 1

Clock Face Fixed with Rotating Hand

 

 

We can equate the instant r0 to a unit base vector along an instant spatial dimension x1, 

for which x2 and x3 are the remaining instant orthogonal dimensions.  Since we are 

limited to three spatial dimensions, xi =1,2,3, in most graphic representations the addition of 

an orthogonal linear dimension of time, t = x0, involves representational difficulty.  If we 

shift the origin of t0 to the origin of the vector r0, so that t0 is co-linear with another unit 

vector along x2, call it ir0, we have a 2 dimensional graphic representation of spacetime 

by substituting the dimension x0 for x2.  In a 3 dimensional depiction, we can make the 

equation of x0 = x3, representing space as a two dimensional plane, x1-x2.  Both methods 

are used in discussions of general relativity, with the familiar warping of spacetime 

represented by a curving funnel in the 3-D depiction.  These representations essentially 

depict time as a linear dimension substituted for one of the suppressed spatial ones.   

 

While such representation has its time tested merits, it yet depends upon the explicit 

relationship of equation (0.5), which in turn retains the implicit relationship of equation 
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(0.8).  We would hope to find a representation of spacetime which can depict time 

explicitly as orthogonal to all three dimensions of space, without the suppression of one 

or two spatial dimensions.  In such case, time is thought of as a compactified dimension 

resident on some local scale, r0, at each locus of 3-D space. 

 

For such a registration of time, instead of a hand moving about a clock face, we might 

imagine the entire transparent face rotating about some center.  Any spot on the 

circumference at a distance of r0 from the center represents the origin of a tangent unit 

time vector t0, its direction either clockwise or counterclockwise depending on which side 

of the face one is viewing.  The clock face, i.e. time itself, then is moving orthogonal to 

two spatial dimensions, say x1 and x2, as shown in Time Scale 2.  Note that the face is 

moving orthogonal to any instant r0 superimposed upon it and to any arbitrary x1 and x2 

coordinates centered on the origin of r0. 

 

Time Scale 2

Figure 2

Clock Face Rotates with Hand
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Since we have stipulated above that the clock hand can be rotated or translated without 

changing the relationship of equation (0.5), the same can be said for a rotation or 

translation both in 2-D and in 3-D space of the whole clock face.  Sticking to the 2-D 

case, in x1-x2, we can designate a pair of differential vectors, dt, pointing clockwise and 

counterclockwise, at each possible location of the point of an r0 about the clock face, so 

that the sum of all dt forms two superimposed circles about the instant center of the clock 

face.  The dimension of time then forms a circle of radius r0 about each point in x1-x2.  

This can be related to a polar coordinate system, in which the arm of the clock face, r0, is 

a norm and the x1-x2 plane is sectioned as the θ coordinate about its origin.   

 

For a 3-D space, in x1-x2-x3, we can once again designate a differential vector pair, dt, at 

each possible location of the point of an r0 about the clock face and at each possible 

orientation of the clock face within the 3-space, so that dt can point anywhere in a 

tangential plane and so that the sum of all dt form a sphere about the instant center of the 

clock face.  Thus the dimension of time, t, is orthogonal to all three spatial dimensions, xi, 

of any arbitrary spatial orientation at the points xi = +/-1.   

 

Now we can simplify and make things a bit more definite as in Time Scale 3.  For any 

clock face θ of radius r0 in θ, an arbitrary x1-x2 plane, rotating about an axis, θ, aligned 

with the x3 axis orthogonal to x1-x2, we can find a second clock face φ of equal r0, 

concentric with, orthogonal to, and rotating with θ, i.e. spinning like a coin, while itself 

simultaneously rotating at the same frequency, φ θω ω= , about an arbitrary axis, φ, where 

φ rotates in θ and with θ.  We can now choose a clock hand, r0, its origin at the center of 
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the concentric clock faces, initially at x2 at one of the two radial intersections of φ and θ, 

and rotate it with φ about φ, so that   

 

1. at t(θ) = 0, r0 points to (0,+1,0) and t0φ points to (0,+1,+1);  

 

2. at t(θ) = π/2, r0 points to (0, 0, +1) and t0φ points to (+1, 0, +1);   

 

3. at t(θ) = π, r0 points to (0,+1,0) and t0φ points to (0,+1,-1);   

 

4. at t(θ) = 3π/2, r0 points to (0,0,-1) and t0φ points to (+1,0,-1);  and finally 

 

5. at t(θ) = 2π, r0 points to (0,+1,0) and t0φ points to (0,+1,+1);.   

 

There are an infinite number of r0 in φ, they each intersect with the clock face of θ twice 

and at the same location in θ with each cycle of φ about θ, and they each extend once to 

each of the extrema in the φ coordinate at +/-π/2, i.e. at x3 = +1,-1.  Thus the point of each 

r0 and the origin of its time vector t0, traces a figure eight oscillation about one half of the 

spherical shell formed by the sum of all time vectors dt, while a wave phase rotates 

counterclockwise about θ.  Note that his motion avoids the coordinate entanglement 

condition as depicted in Gravitation by Misner, et al., [2].  We can use this graphic 

depiction of time to great advantage later in our discussion.   
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Time t(θ) = 0
Figure 3

Time t(θ) = π/2
Figure 4  

Time t(θ) = π
Figure 5

Time t(θ) = 3π/2
Figure 6  

Time t(θ) = 2π

Figure 7

Time Scale 3 - Clock Face Rotates with Hand 

  and Spins on Edge at Common Frequency
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Note that the same instant of time is represented anywhere on the spherical surface of this 

clock, so that the surface constitutes a time co-ordinate singularity.  We can keep track of 

the “length” of time by a count of the number of oscillations of a given r0.   

 

Finally we can envision that the length of r0 is in some manner augmented or diminished 

by a very small amount continually with each oscillation, so that the time dimension is 

seen to be wound up in the manner of a kite string about a constantly increasing or 

decreasing spatial unit sphere.  It is important to remember, however that there are an 

infinite number of such dt continually connected in spherical fashion, so the string 

analogy should not be stretched too far.  It is really the expanse of 3-space both about and 

within such unit sphere, expanding or contracting, that marks the passage of time.  It is 

the expansion of this space at the speed of light, not radialy but tangentially, that gauges 

time in this spacetime.   

 

 

Lorentz Covariance 

 

To complete this analysis, we would like to see if this formulation is Lorentz covariant, if 

the standard of time, 0t , will undergo a scale transformation along with the length 

standard, 0r , according to the principles of special relativity.  Returning to equation (0.6), 

we might envision that under some condition due to acceleration, such as that of cosmic 

expansion, 0r  contracts to 0 0
or r< .  We divide that equation into its contracted version, 
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 0 0 0

0 0 0

o o or ict t
r ict t

= =  (0.9) 

and find the unit time standard varies according to the ratio of the unit lengths, as 

 0
0 0

0

o
o rt t

r
= . (0.10) 

In special relativity as represented by Charles Stevens [3], time intervals transform 

according to  

 ( )1t tγ β′ = −  (0.11) 

where t is the interval in reference frame F and t′ is the same interval viewed in reference 

frame M moving relative to F at velocity, v, as a fraction of the speed of light, c, giving 

the ratio identity β, which cannot be greater than 1, as 

 v
c

β ≡  (0.12) 

and the value of γ, which cannot be less than 1, as 

 
2

1
1

γ
β

≡
−

. (0.13) 

One minus β approaches 0 faster than the inverse of equation (0.13), so the combined 

factor never exceeds 1 and approaches 0 at the limit.  If a relationship can be established 

between the time dimensions in equations (0.10) and (0.11), then we might expect a 

relationship between the factors on the right sides.  We can do this by viewing a unit 

standard, t0, from F and from M.   

The spatial interval transformation, in which we have aligned r with an arbitrary xi axis, 

is  

 ( )r r vtγ′ = −  (0.14) 
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Substituting from equation (0.6) for t, we have 

 ( )1rr r v r
c

γ γ β⎛ ⎞′ = − = −⎜ ⎟
⎝ ⎠

 (0.15) 

which is symmetric with equation (0.11). 

 

Rearranging gives an expression of a proper time, τ, and a proper length, σ, which are 

invariants of M.  We are not using Minkowski space for our 4-vector and r is simply ct, 

so that multiplying equation (0.16) through by c gives us equation (0.17).  This proper 

length will be shown to be related to 0
or . 

 ( )1t tτ β
γ
′

≡ = −  (0.16) 

 ( )1r rσ β
γ
′

≡ = − . (0.17) 

 

In the Chart 1 graphic representation of a Lorentz transformation we have aligned the 

spatial axis, r, of a stationary reference frame, F, with the direction of travel of a moving 

frame, M, making it a pure transformation or boost.  This is expressed for the time 

dimension by equation (0.11) and for the space dimension by equation (0.15).  In each 

equation, the unprimed coordinate with respect to F is modified by the two related 

factors, (1-β) and γ, to arrive at the primed co-ordinate with respect to M.   
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Chart 1 - (1-β) Component of Boost
Figure 8  

 

While the customary analysis is for an arbitrary x, or in this case r and t in F, we will 

apply the same to a space and time unit length in F, 0r and 0t , orthogonally aligned.  This 

is shown in Chart 1.a.  The path of M, moving at a velocity v, or a distance of x in time 

0t , is drawn as the sloped line, and terminates at point A = F(x, 0t ).  The unit of 

spacetime has been marked off in decimal fractions.  The limit of relative frame velocity, 

c, is shown with its inverted slope of 1 0t per 1 0r .   

 

In Chart 1.b, the operation of (1-β) on F indicates the effect of the motion of M, which 

transforms the unit spacetime from that shown in 1.a.  Assume that both F and M begin to 

receive a periodic signal from beyond the left edge of their respective charts when those 

charts are coincident at 0r r′= = .  They both know that the signal flashes are spaced 

one-tenth of 0t  apart.  As shown, x and therefore β happens to be 0.4, resulting in a (1-β) 

of 0.6.  After one 0t , F counts ten flash intervals, but M has by that time moved four 

intervals to the right and only counts six intervals. As a result, for F the perceived time 
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elapsed before the first signal reaches 0r , therefore the distance from 0 to 0r  is ten-tenths 

or unity, while for M that time and distance is six-tenths of 0t  and 0r  respectively. 

 

Note that the path of M observed from F in Charts 1.a and 1.c, the diagonal through space 

and time, is perceived by M in his own view of this spacetime, as simply a path through 

time, shown by the vertical line, 0OM t′− .  Note also that the shortening of the time scale 

is required if c is to remain normalized and invariant. 

 

This is not the time dilation and space contraction of relativity, however.  If the signal 

had been coming from the right, during the time 0t , M would have counted fourteen 

intervals to a count of ten for F, or a factor of (1+β).  This is simply an instance of the 

Doppler effect, a frequency shift.   

 

As can be seen in Chart 1.c, the gauge or scale factor of the spacetime is the same in both 

frames, as indicated by the identical grid intervals.  The unit time and distance scales of 

the spacetime for each are not themselves modified by this observed modification, and 

we will disregard it in the remainder of the discussion.  It is of interest, though, that the 

product of these two factors equals the square of the inverse of the other factor, γ, or 

 ( )( ) ( )
2

2 2 21 1 1 1β β β β γ −− + = − = − = . (0.18) 
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It is the factor γ  that we are primarily interested in, as it embodies the change in the scale 

of spacetime reflected in a measured interval through the Fitzgerald-Lorentz length 

contraction, 

  r rγ ′∆ = ∆  (0.19) 

and through time dilation, 

  t tγ ′∆ = ∆ . (0.20) 

These in turn are related to a change in the proper time, τ, and proper length, σ, as in the 

identity terms of equations (0.16) and (0.17) as 

 dt dt dγ γ τ′= =  (0.21) 

 dr dr dγ γ σ′= =  (0.22) 

 

Following this line of thought, we substitute the unit standards for the unprimed interval 

coordinates in equations (0.16) and (0.17) and their contractions for the primed to arrive 

at an expression of a unit proper time, 0τ , and a unit proper length, 0σ , where each is the 

representation of the unit standards of M in F, 

 ( )0 0 0 1ot tγ τ γ β≡ = −  (0.23) 

 ( )0 0 0 1or rγ σ γ β≡ = −  (0.24) 

 

Some care is in order here.  While the length contraction is often interpreted as a property 

by which a moving body shrinks absolutely in proportion to its velocity with respect to a 

stationary frame, and while this may in some instances be true, its fundamental statement 

is that the unit standard by which a length, l, is measured in a moving frame is smaller 
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than the unit standard in the stationary frame with respect to which it is deemed to be 

moving and from which it is held to be shorter.     

 

In a similar manner, time dilation is deemed to indicate that a given duration of time in a 

moving frame is measured as moving slower from a stationary frame; thus the usual 

depiction of the space traveler who returns to earth after 50 years of near speed of light 

travel, having aged only a couple of earth years.  As in the last paragraph, equation (0.20) 

states the same physical condition as equation (0.19), that the unit standard of time in a 

moving frame is smaller than the unit standard in a stationary frame, thus an interval of 

time is measured as greater, i.e. longer as is a length, in the moving frame, but this does 

not necessarily mean slower.   

 

If our clocks in both the moving and the stationary frame are defined as having hands of a 

length measured by equation (0.19), and the speed of the end of the hand is the speed of 

light, c, then the moving frame will have a longer arm and its angular velocity will 

necessarily be less than that of the stationary frame, and the clock in M will rotate at a 

slower rate than in F.  This is the general interpretation of time dilation.  On the other 

hand, if the length of the hand in M is set to the unit length standard, smaller in M than it 

is in F, then the speed of light constraint for the speed of the hand tip will result in an 

increased angular speed and the clock in M will spin faster.  In such case time will still be 

measured as greater, i.e. longer in M than in F, as a count of the number of clock cycles 

would indicate, in keeping with equation (0.20), since γ  in this case is a measure of the 
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relative angular frequencies of M and F.  This is so even though the length of the clock 

hand path in keeping with equation (0.8) is the same, or 

 0 0 0 0
o or r cω ω= =  (0.25) 

since 

 0 0

0 0 0 0

o

o o

r c
r r

ω
γ

ω ω
= = = . (0.26) 

 

With this in mind, we can combine equations (0.20) and (0.19) as we did in equation 

(0.9), converting from incremental to differential values, and get the equivalent of 

equation (0.10), where this last case explicitly shows the equivalence of the differential 

length ratio and γ, 

 drdt dt dt
dr

γ
′

′ = = . (0.27) 

We have a temporary conundrum, however, as 1γ ≥ , but the unit length ratios in 

equation (0.10) and again if inverted from equation (0.26) is less than 1.  The problem 

arises from the nature of a unit standard.  If it is fixed, any change in an interval, 

differential or incremental, will vary directly, proportional to the standard.  If the standard 

itself varies, then the numerical value of a fixed interval will vary indirectly to the change 

in the standard. 

 

Given a fixed interval, l l′≡ , which is related nominally by γ  as measured from frames 

M over F, equation (0.27) measures the identical interval, dt dt′≡  from two different 
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physical standards.  Equation (0.10) relates two unit standards, 0 0
ot t> , that vary 

proportionally to the two other unit standards, 0 0
or r> , all related by c.  Thus  

 
0 0

o

l l
r r

γ
′

=  (0.28) 

 0

0
o

r
r

γ∴ =  (0.29) 

 

We return now to the charts to see how this might be represented graphically.  Chart 2 

shows an enlargement of the top portion of Chart 1.a in the neighborhood of the time 0t in 

F.  We are analyzing only the effects of the factor γ  on the two reference frames and 

disregarding the Doppler effect of (1-β).  Point A represents the intersection of the line of 

motion of M in F and the time coordinate in F for time 0t , designated as ( )0,F x t .  In 

reference frame M, based on the above discussion and equations (0.19) and (0.20), this 

same point would be measured as ( )0,M x tγ γ , which as drawn for 0 4.β = , so that 

1 0910. ...γ = , would be (0.4364…, 1.0910…).  Finally, based on these same two 

equations this point is expressed as the intersection of x′ and 0t ′ , as shown in the square 

brackets or ( )0,M x t ′′ .     
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Chart 2 - γ Component of Lorentz Transformation
Figure 9  

 

Point B shows the co-ordinates in F corresponding to the numerical values of 

( )0,M x tγ γ , and therefore represents an expansion of the line for v by the value of γ.  

Thus it expresses M in terms of F and is numerically equal to the value ( )0,M x t ′′ .   

 

Point C shows the numerical value in terms of F for the inverse of ( )0,M x t ′′  or 

( )0,M x t ′′ .  Thus if we were to designate ( )0,M x t ′′  in M as ( )0 4 1 0. , .M , ( )0,M x t ′′  

would be ( )0 366 0 916. ..., . ...F .  The time component of C then represents the proper 

time, 0τ , the naught subscript used to indicate its specificity to a unit time standard, 0t ′ , 

of M, when measured from F, and in keeping with the concept of time dilation, it is 

longer in M than in F.  Thus for a value in M of 0 1t ′ = , F will perceive an elapsed time in 

M of 0 0 916. ...τ = .  Once again, while generally interpreted as a slowing of time in M, 

this “lengthening” of time can be attributed to a shortening of the time standard. 
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This is all very interesting, but it would be more illustrative if we could find an essential 

depiction of the relationship of F and M involving γ  and 0τ .   For instance, the length of 

v from F0 to the three points, A, B and C, embodies the factor of γ , but that factor does 

not arise naturally, or at least readily, from an analysis of the charting of v.   

 

The problem lies in the dual utility of the chart itself.  On the one hand it represents a 

Cartesian background for the plotting of two related bits of data, location in time and in 

space.  From this perspective, the right hand end of the speed of light curve, c, at the 

upper right corner of the chart, represents the time elapsed in F during the displacement 

of a light wave or photon by one unit, or ( )0 0,F r t .  On the other hand, it is a 2-D chart of 

spacetime itself, where the speed of light determines the unit speed for the passage of a 

stationary reference frame through time or of a displacement through space with no 

passage of time.  This second usage means that in time 0t , the limit of travel of a 

spacetime vector in the unit spacetime is a circle, or in our chart, a quarter circle, 

described by the unit spacetime vector, 0R , where 

 ( )
1
22 2

0R r t= + . (0.30) 

We will use the designation 0R for both the vector and the circle described using it as a 

radius, dependent on context.  When 0R is orthogonal to the time axis it is a pure space 

vector and equals 0r and when orthogonal to the space axis is a pure time vector and 

equals 0t .  It should be mentioned that in a 4-D spacetime, 0R is an invariant 4-vector, but 

that it is not the same 4-vector residing in Minkowski space, as generally used in 
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relativity, as the time vector is not subtracted, but rather is added to the three space 

vectors, as in equation (0.50).  

 

Drawing this condition on the unit spacetime for F gives us Chart 3.a, and we notice 

immediately that the velocity curve used for the moving frame M terminates at A, beyond 

the limit imposed by c; that is, it violates one of the basic assumptions of relativity.  To 

correct this, in Chart 3.b we draw the velocity curve, ov , through the intersection of 

0R and 1x  at 0A , as shown in close-up in Chart 4, and find on closer inspection that this 

corresponds with the time value of 0τ for 1x .  In fact, for any value of 00 x r< < , this 

condition will be found to hold, which means that the secant of the angle between 0t and 

ov  equals γ, or 

 
0 0

o oOB OA
t

γ
τ

= = . (0.31) 

 

Chart 3 - Contraction of γ Component of Lorentz Transformation
Figure 10  
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Chart 3.c, a condition at a much higher velocity, shows more clearly the relationship of 

ov and 0τ .  We construct a second circle for 0
oR such that 0 0 0

o o oR r t= = , where 

 0 0
ot τ≡  (0.32) 

 

The orthogonal projection of the intersection of 0R and ov  onto t0 intersects at 0τ  and 

intersects the curve v at point C, while an orthogonal projection from C onto 

0r intersects 0
oR and ov at the same point, oC .  Thus we have the similar 

triangles, o o o oB AA A CC∼ , and 0
oR  represents a contraction in the moving frame of the 

unit spacetime vector 0R .   

 

Chart 4 is a close-up view of the top portion of Chart 3.b, showing the contraction of v 

into ov .  We will call this reference frame oF .  oA represents the same physical condition 

as A in F.  The displacement x remains as the same percentage of 0r , but the time scale at 

that point is now the proper time, 0τ .   In square brackets, that same point in oM is 

numerically identical to ( )0,M x tγ γ  at A, however, the unit time standard, 0 1ot =  and the 

related ox , are in oM  instead of F.  Thus the unit standard is local to oM  instead of the 

expression of a stationary spatial background.  If we can think of the time dimension 

o
tM as being inclined along the slope of ov instead of orthogonal as in F, the same 

spacetime numerical values hold in both reference frames. 
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In keeping with this observation, oC is proportionally the same to oA as C is to A.  In 

oM , the unit time and space standards apply as indicated by 0
oR , so that ( )0,o o oM x t  is 

numerically equal to ( )0,F x t shown at A, or in this case, (0.4, 1.0).  For the proper time, 

with all values in units of F, we have the following identity,  

 ( )1
0 0 0

o o
tt t F Cτ γ γ−≡ ≡ =  (0.33) 

 

Point oB indicates the nature of time dilation as conventionally figured.  At point oA , 

oM has traveled the same length of time as F, as given by 0 0R t= , but to F this is 

registered as the proper time 0τ .  By the time oM reaches oB , which F registers as 1.0, F 

has moved on in time to 0tγ .  The length of ov , oOB , is equal to γ. 

 

Chart 4 - Closeup of Contraction
Figure 11
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Perhaps the most significant aspect of this representation is that the secant of the angle of 

0t O ov establishes γ, underscoring the geometric nature of time.  Expanding on the 

relationships of equation (0.31), we have 

 0 0

0 0 0 0

o o o

o o

R tOB OA OB OB OA
t R OA OCOA

γ
τ τ

= = = = = = =  (0.34) 

 

We have examined the Lorentz transformation with respect to time and proper time, but a 

similar analysis could be made with respect to space and a proper distance as modified 

from the conventional Minkowski representation as noted earlier.  The case of time is 

more germane to our present discussion, as will be seen. 

 

The above charts suggest that spacetime curvature is as much a matter of curvature of 

time as it is of space.  Chart 3 indicates that as a moving reference frame approaches the 

speed of light and v approaches co-linearity with c, ov and γ  approach infinity and co-

linearity with the space axis, r, and the time and distance scales indicated by 0
oR become 

exceedingly small, and in the same proportion.  This is precisely what we analyzed 

initially with equation (0.5) and a cyclical time dimension.  If we envision M as an 

accelerating reference frame starting from rest at OF and accelerating to c within the first 

unit of spacetime, we would find that the contracted velocity curve, ov , and the collinear 

contracted time dimension would curve, and that under certain constraints,  would arc 

like a quarter circle.  Its constantly shortening time standard, 0
ot , then is aligned with the 
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arc of γ, and its space standard, 0
or , correspondingly shortened, rotates with and 

orthogonally to it.   

 

A physical instance of this shortening of both 0
or and 0

ot  can be found by examining the 

nature of the deBroglie wavelength of a massive particle.  We assume that the reduced 

Compton wavelength, C  is indicative of the rest state of such a particle, and is 

determined by dividing the reduced Planck’s constant, , by the product of the speed of 

light and the particles rest mass, m, 

 C mc
= . (0.35) 

The reduced deBroglie wavelength, dB , is the quotient of and the particle’s relativistic 

momentum, p, at velocity, v, given as 

 dB p mvγ
= =  (0.36) 

where the factor γ  is the same as used in the development above.  Combining and some 

rearrangement gives us the ratio of these reduced wavelengths as  

 C

dB

v x
c

γ γβ γ= = = . (0.37) 

 

In Chart 4, this is represented by the tangent of angle θ between the time axis in F and ov  

and gives the ratio of the particle velocity in F, where ( ) ( )oA x A x= , and the contracted 

unit standard, 0
or .  Thus 
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0 0 0

C
o o o

dB

x x x
r t R

= = =  (0.38) 

and as we approach the limit of the speed of light and x approaches 0 1r = , we have 

 0

0
C dB dBo

r
r

γ= =  (0.39) 

Thus, in the extreme case 

 0 0if  then , o
C dBr r= = . (0.40) 

Since the frequency and wavelength are related as 

 C C dB dB cω ω= =  (0.41) 

rearrangement gives, in the extreme case 

 0 0 0

0 0 0

o
C dB C

o o
dB C dB

t r t
t r t

ω ω
γ

ω ω
= = = = = = , (0.42) 

therefore we also have 

 0 0if  then , o
C dBt t t t= = . (0.43) 

 

Considering a normalized frequency, that is, where the angular displacement, 0θ θ= , 

always equals 1 and the time consequent varies according to the particular F from which 

it is observed, we can integrate equation (0.25) for any time 0 0
o ot qt q t= =  

 
  

0 0 0 0 0  0

t to or dt r dtω ω=∫ ∫  (0.44) 

 ( ) ( ) ( )0 0 0 0 0 0 0 0 0
o o o o o or qt r qt r q tω ω ω= =  (0.45) 

 0 0 0
o o oqr q r q rγ= =  (0.46) 

and finally 
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 0 0 0

o
o oqr r r

q
γ= =  (0.47) 

therefore 

 0 0 0

o
o oqt t t

q
γ= =  (0.48) 

showing that γ  is simply the frequency ratio of the unit standards of space and time 

between a moving and a stationary reference frame. 

 

It is worth noting the case when 1
0 0 02
o ox R r r= = = , that is, when r equals t at the 

intersection of the curve of c and 0R .  If we consider a massive particle as some manner 

of physical stationary waveform, i.e. a bound, rotating wave, a ratio of r and t of unity 

represents the point at which the translational displacement of the particle in space begins 

to outrun the transverse wave displacement, i.e. its displacement in time.  It is the point at 

which the contracted velocity, ov , equals the speed of light.  Prior to that point the 

waveform would conceivably flatten in space in the form of an oblate spheroid.  From 

that point on, the waveform must contract in all dimensions so that its transverse motion 

remains in phase with its translation, conforming to the deBroglie wavelength. 

 

It follows immediately that from any reference frame F in 4-D spacetime, for a moving 

frame M, a unit standard can be given for space by 0
or and for time by 0

ot , both related to 

a 4-vector (of additive components), 0
oR , as 

 ( ) ( )( )
1
22 2 01

0 0 02
o o o RR r t

γ
= + =  (0.49) 
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where 0ix  are 3 orthonormal bases, symmetric with respect to 0r , 

 ( ) ( ) ( ) ( )( )
1

1 2
2

2 2 22 2 21 1 1 1 1
0 0 0 01 02 03 02 2 3 3 3

R r t x x x t= + = + + + . (0.50) 

 

If we shift the origin of 0t
o  in Chart 3.c from the origin of 0r

o  to its point, we have the 

configuration shown in Time Scale 1 and 2.  From there we can extrapolate to the 3-D 

form shown in Time Scale 3 for the expression of a 3 dimensional clock.   

 

A statement is in order concerning the “relativity” of the reference frames F and M, and 

that of the spacetime scales 0R and 0
oR .  Assuming that F resides in an expanding 3-

manifold, if that residence is isotropic with respect to cosmological red shift, then we can 

state that the local position of F is stationary with respect to space and in an extremal  

position of change with respect to time.  Otherwise, F would experience a blue shift in 

the direction of its travel with respect to space.  In similar fashion, F could experience 

such an anisotropy while rotating about a center, perhaps galactic or supergalactic, that is 

itself stationary or isotropic with respect to cosmological red shift.  Thus at every point in 

spacetime, assuming an isotropic expansion, there exists a potential F for which 0R is a 

local maximum, though 0R  at all points need not be identical.  For any moving reference 

frame M at that same point, 0 0
oR R< . 

 

By this analysis, we can envision a 4-D spacetime with Lorentz covariance in which the 

time dimension is modeled as a compactified rotational dimension orthogonal to the three 
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space dimensions, as developed earlier.  Having taken this side-trip into an investigation 

of spatial and temporal length, we can now look at the concept of mass. 

 

2 – Geometrization of Mass in Classical and Quantum Theories 

 

In his book, Concepts of Mass in Contemporary Physics and Philosophy, Max Jammer 

delineates three types of mass; inertial, active gravitational (corresponding to a source) 

and passive gravitational (corresponding to a test particle), and concludes that the jury is 

still out as to whether these represent distinct concepts of mass.  Looking at the related 

concept of inertia, we can readily see that it can be quantified in terms of length and time 

by the concepts of linear and angular displacement and their derivatives.  For simplicity, 

we limit our thought experiments to analysis in one spatial dimension, unless stated 

otherwise. 

 

Inertial Mass 

 

Inertia is a resistance to any change in the momentum of a body:   

1. An absolute or infinite inertia would indicate immobility or a displacement of 

0dx =  from the reference frame of that body or a change in velocity of 0dv =  

from any arbitrary reference frame, resulting from interaction with another body.   

2. An absolute lack of or zero inertia would indicate an instantaneous displacement 

of a, an undefined or relative infinite displacement or change in velocity due to a 

finite displacement with zero passage of time resulting from such interaction.   
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3. A finite displacement of a body, a, over a finite time duration resulting from its 

interaction is an inverse measure of its finite inertia, i.e. of its inertial mass.   

 

While “body” has been historically conceived as a classical entity, substitution of the 

term “particle” understood in quantum terms, should not change the meaning of “inertia”.   

A free body or particle is classically conceptualized as moving within and through a flat, 

three dimensional space, said space of itself and in the absence of any field potential or 

other bodies or particles of either mass or energy, constituting both a phenomenological 

and an ontological void.  By the above definition and our expansion of it, however, a 

space upon which we can superimpose a metric, in and of itself exhibits the property of 

inertia, since it has a definite resistance to change and in the case of physical space, 

appears to have a finite, albeit accelerating, expansive momentum as evidenced by 

cosmological red-shift.  By virtue of such property, space even without quantum fields 

can not be said to be either a phenomenological or an ontological void.  Within such 

space, time can be seen as the path of its inertial change.  

 

In the interest of gaining a geometric, descriptive explanation of mass, inertial or 

gravitational, we will investigate inertial mass first in a classical target-test body.  In 

general relativity, gravitational field source mass is geometrized in direct relationship to 

length, and we can find a direct relationship between mass and length in the aggregation 

of bodies or particles.  As in the case of stellar configurations, the product of the volume 

of the body and its average volume inertial density computes the mass of the body, so 

that for a given density, the reduced circumference of the body gives a geometrized 
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approximation of its mass.  For inertial test body a the magnitude of its mass, ma, is 

indirectly proportional to the displacement, xa, over the time interval of an interaction, ta, 

under a given impulse, J, from another body or source, which results in a final velocity 

for a of va,  

 1
2

a
a

a a

tJm J
v x

= = . (1.1) 

 

The definition of impulse is the integral of force with respect to time which is equal to a 

change in momentum, ∆P, 

 ( )
 

 
 J Ff

i

t

t
t dt P= = ∆∫ . (1.2) 

 

While in general the force, hence the acceleration, will vary over the duration of the 

impulse, for ease of illustration, we will use a constant force and acceleration, i.e., the 

average over the duration.  In this case a is accelerated from an initial velocity, vai, to a 

final velocity, vaf, over the time interval 0f i a at t t t t t∆ = − = − = .   The time subscripts 

indicate that at time 0it t= , 0aiv = .  Starting at the end of such interaction, at time 

f at t= , the final velocity of a will be reached at af av v= , and it will continue on at that 

velocity as viewed from its original reference frame, F.   

 

We assume that the source of the impulse and the test body exist in a steady state in their 

respective rest frames and in isolation from each other and any other interactions both 

before and after their collision, but that during their interaction they each undergo an 

acceleration and an exchange of momentum and energy.  Thus the acceleration for a is  
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 2

2af ai a
a

a a

v v xa
t t
−

= =  (1.3) 

and the force is 

 2

2 a
a

a

xF m
t

=  (1.4) 

 

Since the time interval for the acceleration of the body and the time interval found in the 

statement of its velocity is the same as the interaction interval, tf, we have the following 

time independent parameter of the interaction 

 ( ) ( )
  21

2  
   J F F xf f

i i

t t

f f ft t
t dt t t dt t m= = = =∫ ∫t  (1.5) 

where the letter t (tav) is an inertial constant of the interaction, of mass-length 

dimensions.  Equation (1.1) can then be expressed in a time independent scalar form 

where mass is the inverse measure of the space interval of the interaction,    

 a
a

m
x

=
t . (1.6) 

We can postulate a second condition, with J unchanged, for a body b, for which  

 b am m> . (1.7) 

Therefore, we have  

 1
2

b
b

b b b

tJm J
v x x

= = =
t  (1.8) 

 

and the following inequality is apparent 

 b av v< . (1.9) 

This suggests that if xb is equal to or less than xa,   



 35

 b at t≥  (1.10) 

and/or if tb is equal to or greater than ta, 

 b ax x≤ , (1.11) 

but that the time intervals cannot be equal if b ax x= .  However, inequality (1.9) would 

also hold as long as  

 
a a

x t
x t
∆ ∆

< . (1.12) 

In any case, the inverse velocity will be greater for vb, so that if t is invariant, the mass of 

the test body is an inverse measure of the displacement and a direct measure of the 

inverse velocity of the interaction, and a geometrized mass should reflect that kinematic 

relationship. If the test body is “tethered” in some manner with respect to its initial linear 

reference frame, so that it is free to move along some circular path into an alternate 

dimension, that velocity becomes an angular measure instead of a linear one, and mass 

becomes a measure of the angular frequency. 

 

It is of interest that if we consider a source for our impulse above from a classical body, 

A, of mass, MA, where 

 A aM m , (1.13) 

moving with an initial velocity of VA, prior to the interaction with a, we find the 

interaction conforms to the following equation  

 
( )

2 A
a A

A a

Mv V
M m

=
+

. (1.14) 

Therefore, at the extreme, where ma is negligible, 
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 2a Av V≈  (1.15) 

and the final velocity of the test body is principally a function of the source velocity and 

not of the source mass.  We would expect that a similar relationship would hold, if 

instead of representing a source in an elastic collision, MA represented a gravitational 

source.  If gravitational and inertial mass are equivalent, then MA VA represents the 

impulse generated by that source, and the final velocity of a test particle a is limited by 

equation (1.15).  Thus if VA is limited by the speed of light, c, then va will be limited to 

2c.  While this appears to be a violation of the postulates of relativity, when we examine 

the properties of an extreme Kerr metric later, we will find some justification, since 2 is 

the coefficient for the tangential or angular component of the metric at the horizon. 

 

With respect to a quantum interaction, we see that equation (1.5) is related to the action, 

S, of the interaction, using Maupertuis’ principle, by 

 
( )

  

22
2

2
  

2 2

f f

i i

x x f f
fx x

f f

f f
f f

f

mmS x d d
t t

m
t

ω

= ⋅ = ⋅ = ⋅

= ⋅ = ⋅ = ⋅ = ⋅ =

∫ ∫

t t t

x x
J x x x

x v
x c x

. (1.16) 

 

As S =  is an invariant of the quantum interaction, and m and x are inversely related, so 

t must be inversely related to m as well (and directly related to x as demonstrated in the 

previous section). Inverse time is the expression of a rate or in this case unit frequency of 

interaction, so that mass is the dynamic representation of the kinematics of that unit or 

angular frequency of the interaction, which varies in proportion to the mass and with 

respect to the above relationship of a and b, as 
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 b aω ω> . (1.17) 

 

Equation (1.16) indicates that the ratio of mass to frequency is equal to the ratio of the 

inertial constant and one half the “final” velocity of the particle.  If S and t are both 

invariants, then so must be vf, and with some substitution and rearrangement we have 

 
1
2 f

m
v c

ω ω= =
t t , (1.18) 

where 

 
2

2 2
f f f

f f

v x x
c

t t
= = =  (1.19) 

 

From this we have the following expressions for the impulse, 

 2 2J P mc ω= ∆ = = t  (1.20) 

which states mass as frequency in a quantum interpretation, since by multiplying through 

by 1
2 c , (differentiating with respect to time and integrating with respect to displacement), 

we have the mass-energy relationship 

 21
2

cE Jc mc cω ω
λ

= = = = =t . (1.21) 

It follows that 

 
c

=t . (1.22) 

 

Returning to equation (1.1) and substituting from equation (1.20) gives the following 

relationship between the length of the interaction and ma, which is as equation (1.6), 



 38 

 
2

a a
a a

a a

Jtm
x c

ω κ
λ

= = = =
t t

t . (1.23) 

We find that for individual quantum mass, i.e. that of the neutron, electron, proton, muon, 

etc., xq is equal to the Compton reduced wavelength, ,C q , for that quantum, as given by 

 ,q C q
q

x
m

= =
t . (1.24) 

 

Quantum analysis assumes the two fundamental invariants, and c, to which we have 

now added an inertial constant, t .  Some simple numerical analysis applied to the 

variables of mass, displacement, and time in conjunction with the equations for impulse, 

the inertial constant, interaction terminal velocity and action will help to clarify the 

geometric relationship of mass, length and time. 

 

In the following table, Row A gives our initial, normalized condition for the variables 

valued in brackets in the left-hand column.  In the remaining rows of this table we have 

substituted a new body of the given mass, and assumed different space and time values 

according to various impulse assumptions.  The column on the right states whether the set 

of assumptions in the variables column violates any of the assumed invariants just stated.   

 

Rows B and C maintain the same impulse and have the same vf, but the space and time 

intervals differ and neither maintains the velocity Row A.  Row D maintains that 

velocity, but violates the action and the inertial constant condition.  It also departs from 

the initial value of the impulse.  The stipulation of a set value for the impulse was a 

convenience for purposes of development of our argument, but it is not a necessary or 
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even anticipated condition of a physical interaction.  Row E is constrained to maintain 

that impulse, thus maintaining the velocity found in B and C, but results in a violation of 

all three invariants and is not a quantum solution.   

 

Only Row F and the related G, while necessarily departing from the initial impulse, avoid 

a violation of the three invariants.  What F and G show at a glance, assuming a quantum 

context, is that quantum inertial test mass is an inverse measure of space and time, the 

latter two of which are identically gauged in keeping with the development of the 

previous section on kinematics in which we saw that 
00 0

o o or t R= = .   

 

In Row F, if the space and time standards are assumed to be smaller by the inverse of the 

factor γ due to a contraction in a moving frame after impulse, the increase in the mass is 

found to be by the factor γ , showing that Row F is consistent with the postulates of 

special relativity.  Row G, on the other hand, shows an increase in the space and time 

standards in keeping with a change in γ  and a corresponding decrease in mass as we 

might find in a moving frame that has decreased its velocity from a prior greater 

differential with respect to some rest frame.   

 

As a source, mass is a direct measure of the impulse as shown by the second column of 

Rows F and G.  Further, since the space and time intervals are identical, and we might 

assume symmetrical, i.e. interchangeable, it is apparent that the impulse has the same 

dimensional form as the spin energy of the quantum.  Again, using the angular frequency 
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in computing the final velocity, we have the same form for the inertial constant and that 

velocity, so that in natural units,  

 2c c= =t  (1.25) 

and mass and frequency measure the same physical condition, interaction per time 

interval, i.e. the smaller the interaction time, the greater the mass and frequency, as  

 2 1m
c cω

= = =
t . (1.26) 

 ( )
22

f f

f f

F m x t

mx t−=

, ,
 

( )
 

 
 

 

tf

ti

f

J

F t dt

Ft

=

=
∫  ( )

 

 

 

tf

ti

f

J t dt

mx

=

=
∫

t

2

    

f f

f

f f

c
v x

t

x ω

=

=

=

( )

( )
 

 
 

2

xf

xi

f

S

J x dx

v

=

=

=

∫
t

 

Violations

of 

c St, ,  

A ( )1 1 1, ,  ( ) ( )2

1 1
2 1 2

1
=  

( )1 1 1=  
( )

1
1 1=

 ( )1 1 1=   

B ( )1
22 1, ,  ( ) ( )

1
2

2

2
2 1 2

1
=  

( )1
22 1=  

( )

1
2

1
2 1=

 
( )1 1

2 21 =  c S,  

C ( )2 1 2, ,  ( ) ( )2

2 1
2 2 2

2
=  

( )2 1 2=  
( )

1
2

1
21=

 
( )1

22 1=  ct,  

D ( )2 1 1, ,  ( ) ( )2

2 1
2 1 4

1
=  

( )2 1 2=  
( )

1
1 1=

 ( )2 1 2=  ,St  

E ( )1
2

2 2, ,  ( )1
2
2

2
2 2 2

2
=

( )1
2

2 2=  

( )
1
2

1 1
2 2

=
 

( )1 1
2 2

2 =  c St, ,  

F ( )1 1
2 22, ,  ( ) ( )

1
2 1

221
2

2
2 4=  

( )1
22 1=  

( )1
2

1
2=

 ( )1 1 1=  None 
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G ( )1
2 2 2, ,  ( ) ( )

1
2

2

2
2 2 1

2
=  

( )1
2 2 1=  

( )1
2

1
2=

 ( )1 1 1=  None 

Table 1 – Numerical Analysis of Invariant Violation of Certain Variable Assumptions 

 

The symmetries are yet more pronounced since the speed of light, written in terms of the 

properties of a wave, can be stated as the ratio of the angular frequency and angular wave 

number, κ ,  

 c ω
κ

=  (1.27) 

which when substituted into equation (1.26) gives us the symmetrical statement for the 

inertial constant, 

 m
κ

=t . (1.28) 

 

A couple of words are in order concerning frequency, which are no doubt obvious to 

reader.  First, since it is an expression of the ratio between a count of the number of units 

or radian contemporaneous with a unit of time, in keeping with the comments concerning 

equation (0.1), it is equal to a count of one radian per fraction of some larger unit of time.  

A base or unit frequency would be an extremal, normalized frequency of one radian or 

other briefest instance of change per one smallest standard of time, 
00 0

o o ot r R= = .  Thus an 

interaction of the greatest frequency and therefore greatest energy per equation (1.21) 

will be the one of shortest duration.  Second, while such normalized frequency might be a 

conventional angular frequency of one radian per unit of time, it might equally be one 

unit of space per unit of time as 
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 0
0 0 0

0 0

1 rc r r
t t

ω= = = . (1.29) 

 

If we state with respect to Rows F and G that  

 0fx r=  (1.30) 

then the displacement xf resulting from impulse J, can be a reference to a rotational 

tangent vector at the circumference of the previously depicted rotating clock, instead of 

the customary translational displacement vector at or from a point-like particle.  Such 

impulse, under the constraints of an invariant c, results in a contraction of the clock, and a 

decrease in 0r and 0t in keeping with γ , and mass is correspondingly measured as 

increased.  Such impulse could be the result of an inelastic collision with a photon-like 

source or the acceleration arising from some field potential.  It is important to note in 

regards to a field gradient, that the increase in mass, as with the impulse, can be continual 

and not in discrete steps and still adhere to equation (1.21), since the frequency can 

increase continually, while the action, S = , remains invariant at any frequency.  

 

To make graphic sense of this in terms of an inertial spacetime continuum, for modeling 

purposes we can think of an elastic collision between two bodies of equal mass and 

spherical shape, a and a′ , constrained so that their motion oscillates in simple harmonic 

motion.  Next we consider a, instead of being a body or particle, to be a 3 dimensional 

continuum, non-particulate in composition, isotropic but for a boundary plane at the point 

of impact from a′ , where a′  is moving normal to and in the direction of a.  Instead of the 

mass quantity of body a, continuum a has a linear inertial density, λa.  That density is 
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subject to variability and elastic strain in addition to being inertial, so that as a′  meets a, 

the inertial density immediately in front of the line of travel of a′  increases, slowing its 

velocity, and the continuum around the area of impact of a′  is strained and curved 

inward.   

 

If we had assumed an inelastic collision, at some point the momentum of a′  would be 

absorbed by a, which would then remain in a distorted condition, marked by a finite 

degree of strain and curvature of the continuum around the area of impact, and the 

impulse would continue to diminish indefinitely into the interior of a. 

 

Given a fixed initial momentum of a′ , the greater the inertial density and therefore the 

mass of a, the smaller will be the penetration of a′  and the radius of the strain at the area 

of the impact.  We can envision that there are two instances of curving, one as a generally 

deformed hemispherical area around the area of interaction of a and a′  and the other 

along the sides of the generally toric deformation of the initial plane of the interaction.  

For simplicity we will assume that the radii are of equal magnitude, though necessarily of 

different sense.   

 

With an elastic collision, at some point all the momentum of A will be transferred to a, 

but in the case of a continuum a, at such point all the kinetic energy of A is transferred to 

the elastic potential energy of the stress and strain at the deformation of a. As the 

restorative forces in the plane of the interaction of a a′  exceed the compression force of 

a′  on a, a force which is normal to the interaction plane, a will rebound and begin to 
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work on a′ , which will travel in the opposite direction, eventually to be expelled from 

the plane of the initial impact.   

 

We imagine this interaction now with another half continuum mirrored opposite a, so that 

the total system of the aa′ interaction constitutes a resonant oscillation of a localized, 

ellipsoidal section of the combined continuum along the center axis aa′ , in which 

0a am m m′= = .   

 

Using equation (1.6), we can state the linear inertial density, λ0, of the continuum at the 

system as follows,  

 20
0 02

0 0

m
r r

λ κ= = =
t

t . (1.31) 

This indicates that the linear inertial density is equal to the inertial constant times the 

curvature of the deformation or strain, as shown in the last term.  Assuming an isotropic 

Gaussian curvature, k, given by  

 2
0 2

0

1k
r

κ= = , (1.32) 

this means that mass is a measure of linear curvature, given by the angular wave number, 

κ, once again indirectly related to the length scale, as 

 0 0
0

m
r

κ= =
t

t . (1.33) 

 

Now we stipulate that instead of a linear oscillation, we have a torsional oscillation of a 

small section of a generally rigid continuum about an axis, θ, so that at resonant 
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frequency a wavelength of characteristic angular wave number, 0κ , develops.  As a 

torque vector, θ flips in direction and oscillates in intensity with each change in the 

direction of the torsion.  We next rotate the axis of torsion about a center of wavelength, 

such that the transverse momentum of θ carries the two nodes into a newly defined axis, 

φ, in the general helical path of the oscillation.  Restorative forces prevent rotation of φ in 

θ beyond a point and the original oscillation of θ continues, now aligned as φ, between its 

original nodal poles and causing those displaced nodes to rotate about θ without 

entangling or twisting the continuum beyond a general range of one half π.  As a result, 

the torque vector for φ does not oscillate as did θ.  It rotates about θ, so that θ ceases to 

flip its direction and becomes a sustained angular momentum vector according to the 

rotation.  Note that θ remains the primary torque, with φ as a derivative, so that the 

interaction between the two is non-commutative and there is a tendency over time for φ to 

realign as θ.  

 

The motion can be crudely emulated by imagining a basketball held out in your two 

hands so that the label is facing up and away from you, i.e. it would be readable by 

someone facing you and looking down on it.  The label represents the ultimate +θ 

direction and you can start the initial oscillation by moving your hands back and forth so 

as to rotate the ball about an axis through the center of the ball and label.  When the ball 

is rotated so that your right hand is closest to your body, start the return counterclockwise 

cycle, but initiate a second rotation so that you start a new motion by 1) rotating the right 

hand over, left hand under and twisting 90 degrees ccw so that someone on your left can 

tilt their head to the right and read the label, 2) returning the hands to their first position, 
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but twisting the ball back so that the label is facing you upside down, 3) rotating the left 

hand over, right hand under and twisting 90 degrees ccw again so that someone on your 

right can tilt their head to the left and read the label, and 4) returning the hands to their 

original position, but twisting the ball over so that the label is readable by someone at a 

distance in front of you, 5) continuing on to step number 1.  Continue the process so that 

the motion between each step is smooth and the label remains ideally in the same plane or 

in a wide cone of even angle.  Each hand will trace a figure 8 with each cycle, crossing at 

45 degrees to the plane and in the direction of rotation with each half cycle.  The label 

and its antipode represent the original boundaries of θ, now of φ, and rotate while 

avoiding entanglement.  The a) left and right hands and the b) top and bottom of the ball 

when at step 2 oscillate between the top and bottom position, 90 degrees out of phase, 

while the motion of the hands between position 1 and 3 clearly shows, in the context of a 

continuum, the torsion involved in both a and b.  

 

Such rotational oscillation mimics the rotation of our three dimensional clock developed 

in the previous section on kinematics.  While locally constrained by the stress of an 

expanding spacetime, the wave phasing which manifests as spin is free to transform 

translationally and rotationally subject to field and particle interactions and perturbations.   

 

The torsion forms a sinusoidal wave rotating about θ, with a sustained displacement of 

the initial θ nodes.  In this context, the moments of maximum capacitive and inductive 

power of the wave generate a capacitive, Cε , and an inductive, Lµ , torque (crossed from 

a position of zero displacement into the most immediate direction of increasing force, 
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thus backwards in time for Lµ ) that rotate with θ, 90 degrees out of phase with each 

other, Cε  generally parallel and Lµ  generally anti-parallel.  These torques interact with 

the nodes of φ to prevent realignment with θ.  The rotation of the inductive torque 

generates an effective magnetic moment anti-parallel to the angular momentum vector of 

θ.   

 

In the presence of an isotropic expansion, the characteristic inertial density and related 

mechanical impedance, given by 

 0 0 0 0Z cλ κ ω= = t , (1.34) 
 
decrease over time, advancing the inductive moment and dropping the frequency.  This 

results in the flip of the inductive torque to a generally parallel position behind the 

capacitive torque, which also flips the effective magnetic moment to parallel.  A power 

transmission results anti-parallel to the inductive torque and the spin vector, along with a 

generation of charge, the latter of which is a measure of transverse wave momentum; we 

recognize this as beta decay.  The decreased frequency is that of the proton, and that of 

the emitted wave is that of the electron.  The rest frequency of the latter is a function of 

geometry and the expansion rate. 

 

With a retarding of the capacitive moment, the capacitive torque flips anti-parallel, the 

oscillation becomes an anti-proton and emits a positron.  The expansion of spacetime is 

more conducive to the inductive advance, resulting in a predominance of the proton-

electron system.   
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Thus a geometrization of massive-particle mass involves the representation of quanta as 

three dimensional clocks and indicates that particle mass is a measure of the frequency of 

the clock.  As the above continuum is a representation of 3-D space, its quantization 

represents an oscillation of a local section of space that is made discrete by the 

boundaries of its harmonic oscillation.  If that oscillation is seen to be at resonant 

frequency, 0ω , then we have the following relationship to the wave speed in such 

continuum 

 0
0 c

ω
κ =  (1.35) 

which when substituted into equation (1.31) gives the following wave equation, where 0τ  

is the tension force in the continuum,  

 
2

2 0
0 0 02 2

1
c c

ω
κ λ τ= = =

t
t  (1.36) 

where by canceling the inertial constants and substituting conventional derivatives for the 

Euler versions we have the dimensionally equivalent wave equation 

 
2 2

2 2 2

1

ix c t
ψ ψ∂ ∂

=
∂ ∂

 (1.37) 

Finally, integrating equation (1.36) with respect to the wave number shows the basic 

wave nature of mass – energy equivalence as  

 
2 2
0 0 0

0 2 2
0 0

1 Eim i
i c i c
κ ω
κ κ

− = = = −
t t  (1.38) 

 

From this discussion we can state some basic quantum dynamic properties of interest in 

terms of the inertial constant: 
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 Interaction impulse = transverse wave momentum p mc ω∆ = = t  

 Force – stress force = transverse wave force 2τ ω= t  

 Action = spin angular momentum S c ω
κ= = =t t  

 Rest Mass cm ω κ= =t t  

 Spin Energy 2E mc cω ω= = = t  

 

For the etymologically inclined, the word mass is from the German massieren meaning to 

knead dough, and evokes the notion of folding and stretching the dough with the heel of 

the hand, turning it 90o, and repeating the process.  This action forms gluten, allowing the 

dough to catch the gas of the leavening agent and expand.  The symmetry of this 

scenario, with its orthogonal folding and rotation of dough, and the torsional rotation of 

the 3-D clock developed herein as an analogue of the fundamental rest mass rotational 

oscillation of spacetime is inescapable. 

 

Gravitational Mass (Source) 

 

In general relativity, gravitational source mass is converted from conventional units 

related to a force, Mkg, to units of length, r, as Ml, by the conversion factor of GN/c2, 

where GN is Newton’s gravitational constant and c2 is the speed of light in a vacuum 

squared, both of which are taken as free parameters, as  

 ( )28
2 7.424 10N m

l kg kgkg
Gr M M x M
c

−= = = . (1.39) 
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here evaluated using the CODATA SI values.[4]  This procedure facilitates computation, 

as when used in a metric, so that if Ml is the geometrized mass of an extreme Kerr black 

hole, the reduced circumference at the horizon is h lr M= . 

 

It bears noting that the relationship between the two measures of mass is direct and 

appears to be classical, so that we can state a differential form 

 2
N

l kg
Gdr dM dM
c

= =  (1.40) 

We should acknowledge, however, the obvious and logical possibility that Mkg is an 

aggregation of some basic quantized units of mass of one or more magnitudes.  

Consideration of this equation using the smallest of rest-mass quanta, the electron, gives 

a linear measure of its mass in orders of magnitude of 10-58 meters.  For the proton and 

neutron, the figure is slightly larger at 10-54 meters.  However, all of these are much 

smaller than the Planck length of 10-35 the reputed smallest of determinable physical 

scales, raising possible theoretical questions about the use of equation (1.39) in 

determining a geometrized mass for individual quanta. 

 

As previously discussed at equation (1.24), the mass of an individual quantum, a neutron, 

proton, electron, tau, or muon is related to its reduced Compton wavelength by the 

following, where the rq is the reduced circumference and the norm of a polar coordinate 

system centered on q. 

 ,
1

C q q
q q

r
c m m

= = =
t . (1.41) 

In the SI system, t (tav), evaluates as 
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 433.5176 10q qm r x kg m
c

−≡ = = ⋅t  (1.42) 

 

In summary, in contrast to the direct relationship in the geometrization of mass in the 

classical application of general relativity, in quantum theory conventional mass is 

indirectly related to length.  If we consider a relativistic quantum qualitatively, we know 

that the deBroglie wavelength decreases as the relativistic mass and the particles 

momentum increases, indicating once again the inverse relationship of mass and length.   

 

 

3 – Derivation of Newton’s Gravitational Law with Quantum and General 

Relativistic Principles 

 

We would like to derive Newton’s Gravitational Law from quantum principles, while in 

keeping with the principles of general relativity.  The quantum principle we are interested 

in is that of fundamental discrete units or quantities of rest mass.  This means that we 

seek to express the gravitational force, F, of his law as a product of 1) the number, na, of 

some as yet unknown fundamental discrete units of mass, m0, in two aggregate bodies of 

mass, Ma,  2) the curvature of space, k, expressed as the inverse square of the massive 

bodies separation in numbers, nr, of some as yet unknown minimum unit of length 

specifically of a reduced circumference, r0, and 3) a fundamental discrete unit or quantum 

differential of gravitational force, dG0, as 

 

 
1 2

2
1 2 0m m k M M rF n n n dG−=  (2.1) 
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We state Newton’s Law, where GN is Newton’s gravitational constant, conventionally 

considered a free parameter, as  

 
1 2

1 2
1 22M M k N N

M MF G M M kG
R

= = . (2.2) 

 

Assuming a 3-space that is isotropic with respect to a source mass, M1, here we have 

made use of the observation that the inverse square component of the distance of 

separation, R, of M1 and M2 is the reduced circumference of the spacetime around M1, 

making the inverse of the square of R the measure of the Gaussian curvature, k, at the 

location of M2, using  

 2

1k
R

= . (2.3) 

 

The left hand side of equation (2.2) represents a force.  Some reflection will tell us that if 

it is to be related to general relativity, the right hand side must represent the product of a 

4-stress, T, and an area, Α, or in keeping with the last paragraph, an inverse curvature.  

Thus this equation is dimensionally equivalent to  

 1F T Tk −= Α = . (2.4) 

 

Some rearrangement gives us a scalar form  

 1k F T−=  (2.5) 
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where the curvature of spacetime given by the left term is related to the stress-energy 

density of the right by the inverse force.  This is thus related to the field equation of 

general relativity, customarily expressed in tensor form as 

 8 NG G Tαβ αβπ= −  (2.6) 

where the Einstein curvature tensor on the left is similarly related to the stress-energy 

tensor on the right by the geometrically based numerical coefficient and Newton’s 

gravitational constant, which we will see contains a force differential. 

 

Analyzing GN dimensionally, we know it has the dimensions of distance, r, cubed divided 

by the product of a mass, m, and time, t, squared.  If it in fact conceals a force 

differential, extracting that force in the third term shows GN  to be the product of that 

force and the inverse square of a linear inertial density, λ, as 

 
3 2

2
2 2 2N

r r mrG dF
mt m t

λ −= = =  (2.7) 

The inverse inertial densities in Newton’s constant then convert the product of the masses 

on the right side of Einstein’s field equation (2.6), of which there are two, one in the force 

differential and one in the stress tensor, to the product of two distances.  The result, 

however, does not give the dimensions of curvature.  With respect to equation (2.5), 

which has an inverse force on the right, the GN  as shown in equation (2.7) has a direct 

force.  Using the fundamental identity of space and time as shown in equation (0.7), we 

can make the following dimensional substitutions into equation (2.7),  

 ( )
( )

33 2
1

2N

itr tG dF
mt m ir t mr

−= = = =
−

 (2.8) 
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which converts GN  to an inverse force and equation (2.6) assumes the dimensional form 

of equation (2.5). 

 

Expressed as a force, gravity is centrally directed toward the bodies of mass and within 

the context of a flat spacetime, assumed to be isotropic about each.  The curvature in such 

conditions is considered generally spherical, so that some rearrangement of equation (2.4) 

in the absence of any rotation of the two bodies about each other, results in a centripetal 

gravitational tension stress, f3, where the subscript indicates the dimensional order of the 

stress 

 3
Ff Fk= =
Α

. (2.9) 

 

The stress in the case of general relativity is a 4-stress, however, so that we are looking 

for a formulation that makes explicit the relationship between a 3-stress and a 4-stress, 4T  

 3 4
Ff T T
A

≡ ≡∼ . (2.10) 

Additionally, we are interested in the 4-stress associated with an accelerating expansion 

of space, so we take a closer look at the geometry of stress, specifically of isotropic 

expansion stress.  We examine the case of energy density - stress in an n-manifold that is 

expanding in response to its expanding n+1-core.  First, in Stress Diagram 1 we examine 

the differential area of a 2-sphere on a 3-ball, such as an expanding balloon. We imagine 

that the balloon is expanding due to a differential pressure normal to the balloon surface,  

so that there is a 3-stress (tension), dT3, orthogonal to the balloon’s surface, the 2-sphere.  

We look at a differential square on the surface of the balloon and see that the sum of the 
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2-stress (transverse or shear), df2, in the balloon surface at that locus should be equal to 

the orthogonal tension stress, or 

 3 2 2dT dfγ=  (2.11) 

where γ 2 is a geometric factor summing the shear stress.   

 

Stress Diagram 1
Figure 12  

It is the displacement of the vertices of the square that defines the change, so instead of a 

normal unit vector to each mid-edge of the differential square, we stipulate a ½ vector at 

each vertex, along with a ½ extension or shear vector from the adjacent edge, giving a 

total of 8, 1 vectors at the four vertices.  With a total of 4 resultants of the vector pairs at 

each vertex, we have  

 ( )2 2
2 4 1 1 4 2γ = + =  (2.12) 

and equation (2.11) becomes  

 3 24 2dT df=  (2.13) 
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Extending this approach with analogous elasticity conditions to a 3-space on a 4-core, in 

Stress Diagram 2 we have a 4-stress, (which necessarily cannot be shown) normal to and 

equal to an isotropic 3-stress, as 

 4 3 3dT dfγ= . (2.14) 

 

Stress Diagram 2
Figure 13  

 

This time we consider a differential cube, and instead of the customary assignment of an 

orthonormal tension stress vector to the center of each of the faces of the cube, we assign 

a quarter of each normal vector to the corners of each face, collinear with and equal to the 

shear vectors of the two adjacent surfaces. This is equivalent to a Poisson’s ratio of 1/3. 

The sum of these ¼ tension vectors and the two parallel ¼ shear vectors is a ¾ vector, so 

that there are 3, ¾ orthogonal stress vectors at each vertex.  The resultant of the three 

orthogonal components at each corner then, aligned with the cubic diagonal, is the total 



 57

stress contributed to each of the 8 vertices by an isotropic stress, so that the geometric 

factor relating the stresses in equation (2.14) is 

 ( ) ( ) ( )2 2 23 3 3
3 4 4 4

3 38 8 6 3
4

γ ⎛ ⎞= + + = =⎜ ⎟
⎝ ⎠

 (2.15) 

and equation (2.14) becomes 

 4 36 3dT df=  (2.16) 

 

Next we examine a scalar expression of the equation (2.10) in light of this adjustment, 

where we specify that Α0 is a fundamental quantum unit area, 

 1
3

0

FTγ − =
Α

, (2.17) 

with the derivatives for an invariant T being 

 1
3 2

0 0

1 0T T FdT dF d dF d
F

γ − ∂ ∂
= − Α = − Α =

∂ ∂Α Α Α
. (2.18) 

 

Separating and inverting this function we have the two following differential equations, 

the first of which is straight forward,  

 ( )1 1 2
3 0 3 0dF dT dTγ γ κ− − −= Α ≡  (2.19) 

and the second one expressing various parsings of interest, especially those in which the 

stress force is removed from the equation,  

 

( )

2
1 0 0

3 1 2
3

2
0 0     ln ln

Fd dT dT dT
F T T

d T d T

γ
γ

κ

−
−

−

Α Α
Α = − = − = −

= −Α ≡ −

 (2.20) 
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According to the above specifications a quantum formulation for Newton’s Law, as 

previously stated, would be  

 
1 2

2
1 2 0m m k M M rF n n n dG−= . (2.21) 

 

An aggregate mass is the product of the number of quanta in that aggregate times the 

fundamental unit of mass or with rearrangement 

 
0

a
Ma

Mn
m

=  (2.22) 

and the  reduced circumference of the separation of the two bodies of mass is the product 

of the number of unit lengths in that separation and the minimum or quantum unit length, 

or 

 
0

r
Rn
r

= . (2.23) 

 

Substituting equation (2.22) and equation (2.23) into equation (2.21), noting the 

dimensional equivalence of the bracketed term to equation (2.7), gives  

 
1 2

2
01 2

02 2
0

M M k
rM MF dG

R m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.24) 

 

Assuming that the gravitational quantum is equivalent to the formulation from equation 

(2.19) and substituting from its middle term, gives the following, in which the stress 

differential is normalized in its relationship to dG0 as dT0 = 1, 

 
1 2

4
1 01 2 1 2

3 02 2 2
0

M M k N
rM M M MF dT G

R m R
γ −⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. (2.25) 
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In keeping with earlier development, we restate the relationship between the above 

postulated quantum mass, m0, and length, r0, the latter stated as the reduced Compton 

wavelength,  

 
0 0

1 1
0 ,

0
Cm r

c c r
− −= = =

t . (2.26) 

We substitute from equation (2.26) into the bracketed term of equations (2.24) and (2.25), 

and get 

 
4 6

10 0 0
0 3 02 2 2

0
N

dG r rG dG dTγ
λ

−= = =
t t

, (2.27) 

which in a natural system simply equals γ 3-1. 

 

After some rearrangement, we have 

 ( )1/ 62 1
0 3 0Nr G dTγ −= t . (2.28) 

Since with respect to dG0, dT0 equals 1, and as we know the other invariants in the right 

hand term, we can solve for r0, and find that in the SI system it equals the reduced 

Compton wavelength of the neutron or  

 16 16
0 ,2.100246... 10 2.10019... 10n C nr x m x m− −= ≅ =  (2.29) 

within the standard uncertainty for GN.  The “n” in the subscript “0n” is redundant and 

simply emphasizes the neutron scale as the fundamental, quantum scale.  All other values 

for the fundamental properties incorporate and can be computed from this value.  

Therefore, the fundamental gravitational mass is the neutron mass or  

 27
0 1.67492... 10nm m x kg−= = . (2.30) 
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This is not stating that the neutron is the only particle responsible for the generation of 

quantum gravity.  In the full development of this model, the proton is seen to be a neutron 

which has undergone a frequency drop due to the transmission of a portion of its power 

as the electron in the process of beta decay.  It is the derivative of the wave force of the 

fundamental oscillation with respect to stress that is the gravitational quantum. 

 

The gravitational quantum then is variously  

 1 2 1 1 33
0 3 0 0 3 0 0 3 0 4.244... 10n ndG dT dT T d x Nγ κ γ γ− − − − −= = Α = Α = , (2.31) 

where the last algebraic term makes use of equation (2.20). 

 

Some rearrangement gives 

 0 0
0 3 0

ndGT dT
d d

γ Α
= =

Α Α
 (2.32) 

 

With this development, we can get the spin energy density-stress, T0, of the neutron, 

which we assume to be a quantum waveform, where E0n is the spin energy of the neutron 

and  

 2
0 0τ ω= t  (2.33) 

is the transverse wave force of the oscillation, 

 
2 2

1 37 20 0 0
3 0 3 3 2 2

0 0 0 0

1.625... 10 /n n

n n n n

E m cT x N m
r r r r

ω τγ − = = = = =
t . (2.34) 
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Substituting this into equation (2.31) for the gravitational quantum and rearranging, we 

get the following expression and value for the differential of the unit area, 0d dΑ = Α , 

which we find is equal to the Planck area, 

 1 70 2
0 3 0 0 2.6116... 10Pld T dG x mγ − −Α = = Α =  (2.35) 

 

This analysis indicates that Newton’s gravitational constant contains a quantum 

differential, and that the neutron scale is the fundamental scale of an expanded spacetime.  

It also indicates a relationship to the Planck scale, and we would like to determine more 

of that relationship next. 

 

 

4 – Analysis of the Relationship between the Neutron and the Planck Scale 

 

If we use the conventional geometrization factor from general relativity for mass, GN /c2, 

for the neutron we get a length measure of a hypothetical quantum black hole horizon as 

 54
2 1.243... 10N

hn l,n n
Gr m m x m
c

−= = = . (3.1) 

Comparing this with the neutron reduced Compton, we get the dimensionless number 

 , 39

, ,

5.92... 10l n hn

C n C n

m r x −= = . (3.2) 

Squaring equation (3.1) to get the inverse curvature of a hypothetical quantum inertial 

sink at that scale gives 

 2 1081.545... 10hnr x −=  (3.3) 

which is related to the Planck area by the same ratio or 
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2

395.92... 10hn

Pl

r x −=
Α

. (3.4) 

It bears noting that this is in the range of the factor separating the gravitational and the 

strong interactions. 

 

Using the structure for Newton’s constant developed above, we analyze the conventional 

geometrization factor, where we make use of the classical wave relationship,  

 2
0 0cτ λ=  (3.5) 

in which τ0 is the linear tension force and in this case the transverse wave force in a wave 

bearing medium, λ0 is the linear inertial density of that medium and c is its speed of wave 

propagation.  We find that the conventional conversion factor is equal to the differential 

of the natural log of the expansion stress divided by the linear inertial density,   

 
2 2

1 10 0 0
3 0 3 0 02 2 2 2

0 0 0 0 0 0 0

1 1 1 1N n nG dG r rdT dT dT
c c c T

γ γ
λ λ λ λ τ λ

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.6) 

 ,0
0 02

0 0 0

ln1 lnC nN

n

G d TdT d T
c T mλ λ

= = =  (3.7) 

 

Using CODATA values for the neutron mass and reduced Compton to determine λ0, we 

can solve for dlnT0 and get the factor found in equations (3.2) and (3.4) 

 
3

1 1 390
0 0 0 3 02ln 5.92146... 10n

n

rd T T dT dT x
m c

γ− − −= = =  (3.8) 

Inverting and multiplying through by 0 1dT =  gives the value of T0,  

 
2 2

38 20
0 3 3

0 0 0

1.6888... 10 /n

n n n

m c cT x N m
r

λγ γ= = =
Α Α

 (3.9) 
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from which we can get the transverse quantum wave force of the neutron  

 1 5
0 3 0 0 7.1676... 10n nT x Nτ γ −= Α =  (3.10) 

 

With the gravitational quantum as the differential of the quantum transverse wave force 

with respect to differential stress, ( )Tτ ′ , we have the ratio of that differential and the 

wave force itself, ( )Tτ , or equation (2.31) over equation (3.10) 

 ( )
( )

390 0
0

0 0

ln 5.92146... 10
n n

T d dGd T x
T

τ τ
τ τ τ

−′
= = = =  (3.11) 

which is the ratio of the gravitational and the strong interactions. 

 

Rearranging equation (3.10) and taking the derivative of inverse curvature with respect to 

the isotropic stress results in an evaluation equal to the Planck area, 

 0
0 3 0 0 02

0

lnn
n Pld dT d T

T
τγΑ = − = −Α = −Α . (3.12) 

once again indicating that the Planck area represents a differential of expansion stress.   

To verify this statement, we substitute equations (2.33), (3.5), and (3.9) for the expansion 

force and stress into the second term here and find 

 

2 2 2
10 0 0 0

0 3 0 3 02 2 4 2 2 4
3 0 0 0

2

4 3       

n n n

N N

rd dT dT
c c

cG G
c c

ω ωγ γ
γ λ λ

−
−

⎛ ⎞Α
Α = − = −⎜ ⎟Α ⎝ ⎠

= − = −

t t

t
 (3.13) 
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From this analysis of the differential nature of the Planck area and the endnote 

comments,i which suggest expansion along a hyperbolic manifold, from equation (3.12)

we can show the Planck length as a differential value, as 

 
1
2 35

0 0 0 0ln 1.6161... 10n Pldr d r d T r x m−= Α = = = . (3.14) 

 

5 – Cosmological Implications 

 

Basic to our discussion is the assumption that spacetime is expanding relative to our local 

frame of reference.  This means that over time a local fixed unit length standard becomes 

an ever decreasing proportion of some linear measure of the cosmic extent.  If we project 

backwards in time, we can assume that at some point that measure of cosmic extent was 

equal to the current local length standard or unity.   

 

The current concept of a big bang start of cosmic spacetime expansion implies an initial 

condition of maximum inertial density, possibly infinite, which decreases with the 

expansion of space from an extremely small volume, possibly zero, i.e. from a 

singularity.  Instead of emergence from a singularity, the space component of spacetime 

can be modeled as a boundary on the next higher dimensional manifold itself under 

expansion, analogous to a circle drawn on the surface of an expanding balloon.  

Alternately, we might imagine a spherical balloon of fixed size with a circular wave 

emanating from one spot, widening in diameter as it approaches an equator before 

shrinking again as it nears the antipode.  An analogous inertial spacetime oscillates on a 

cosmic scale between a maximum density and rarification, between a maximum 
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compression and maximum extension.  The fact that the expansion appears to be 

accelerating indicates that the expansion rate is best understood exponentially. We can 

then take the condition of maximum density as unity instead of as a singularity, and 

gauge any expansion with respect to that unity for Α0 and r0 as inversely related to the 

associated increase in stress T0 due to expansion according to equations (3.12) and (3.14).    

 

The current expansion factor, κexp, the ratio of the current fundamental neutron scale to 

the Planck length, is equal to the inverse square root of the differential natural log of the 

expansion stress,  

 
1 190

exp 0
0

ln 1.29952... 10nr d T x
dr

κ
−

= = =  (4.1) 

As this expansion is at an exponential rate, in terms of doubling from an initial condition 

of maximum density equal to the linear inertial density of the neutron scale, λ0, with time 

and space normalized, in terms of the whole or an arbitrary unit standard, cosmic 

expansion, Cx, is 

 ( ) 18 11
expln 2 9.00764... 10  light seconds 2.8544... 10  light yearsxC x xκ= = =  (4.2) 

Note that the last term would indicate, if interpreted as a straight line increase at the 

speed of light, an expansion age of the cosmos of 285.44 billion years. 

 

An exponential expansion rate, Xe, derived in the full development of this model and 

shown to equate to a predicted Hubble rate of 72.791 km/mps/s and supported by 

independent studies as 73 km/mps/s +/- 8 km [7] and 72 km/mps/s [8], shows the change 

in unit scale per second as  
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 180
0

0

second 2.35896... 10  se
rX H x

r
−∆

= = =  (4.3) 

If we interpret this as a straight line expansion rate from an initial singularity, inverting 

would give the age of the cosmos in current units as 

 1 13.433 billion yearseX − =  (4.4) 

However, if the Hubble rate is exponential or compounding, the following gives the 

Hubble time, τH, as a time in current units for a doubling in spatial linear extent, or 

 1ln 2 9.311 billion yearsH eXτ −= =  (4.5) 

The product of the expansion rate and the expansion factor is the number of doublings or 

 exp 30.655... doublings 285.43 billion yearseX κ = =  (4.6) 

 

Following this logic, if the wavelength of the cosmic microwave background is 

approximately 3.3mm and indicates an expansion along with spacetime from a primal 

epoch of beta decay as gauged by the electron Compton wavelength, ,C eλ , dividing the 

natural log of such expansion by the natural log of 2 gives the number of doublings based 

on those parameters or 

 ( )
9

1

,

.0033 ln1.360... 10ln ln 2 30.34... doublings 282.5 billion years
ln 2C e

x
λ

−⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.7) 

in very close agreement with equation (4.6). 

 

This observation indicates that r0, related to the reduced electron Compton wavelength, 

,C e , by the ratio of the neutron to electron Compton wavelength of  0.000543…, 

remains stable as spacetime and the CMB expands and indicates that such quanta did not 
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have a geometry of the Planck scale at an early epoch, which instead of starting from a 

singularity with all the physical dilemma that entails, started expansion from a maximum 

finite density.  The Planck length, then, is the ratio of the neutron reduced Compton and 

the cosmic extension from an initial compact condition of maximum density, and 

continues to decrease with expansion. 

 

Alternately, but not contradictory, if we think of the cosmic extent of 3-space as a fixed 

unit, what appears mathematically from a local perspective as expansion is from the 

universal perspective a process of regional and local concentration of inertial density.  

With respect to our analogy of the fixed balloon above, the linear (and area) density of 

the balloon in the absence of a wave is invariant over the surface of the sphere, but a 

wave moving over its surface creates a density differential at the wave front, increasing 

as it approaches a pole and antipole and decreasing as it approaches an equator.  From the 

reference frame of the traveling wave front approaching the poles, the stress related to the 

wave front,T0, increases and r0, as a related unit standard which in the case of the balloon 

we might give as the distance perpendicular to the given polar diameter, decreases over 

time.  The ratio of r0 with respect to the balloon’s extent, Bx, its radius at the equator, 

represents a decreasing differential length, dr0, and can be expressed as the cosine of the 

angle of declination of the wave front.   

 

The wave front in this analogy represents the current local quantum scale given by r0n.  If 

we were to rotate the balloon about the given polar axis at the same frequency as the 

wave’s movement over its face, each point in the wave front would mimic the action of 
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our 3-D clock.  From either of the above perspectives, the energy per cosmic extent is 

invariant and cosmological red-shift is apparent, and in neither case is the Planck scale a 

fixed discrete scale.   

 

Black Hole Metrics 

 

Assuming that the above and supportive analysis does indicate that the neutron is a 

quantum inertial sink, but not a quantum black “hole”, then a maximum linear inertial 

density is given by  

 12
0

0

7.975... 10 /n

n

m x kg m
r

λ −= =  (4.8) 

This would seem quite small, but for its bulk implications.  For a volume density, we 

would figure the number of hypothetical fundamental rest mass quanta per volume of 

such quanta, tightly packed.  Using a packing system of one sphere with twelve 

contacting identical spheres, and disregarding any expansive effects of spin, charge, etc., 

we can compute the theoretical maximum density and find that it equals roughly 

 46 32.2549... 10  /  x quanta m  (4.9) 

 

Inverting the neutron mass gives the number of such quanta per kilogram or  

 265.9704... 10  /  x quanta kg  (4.10) 

for a maximum theoretical density of  

 19 33.7768... 10  /  x kg m  (4.11) 

or a density per sphere of one meter radius 
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 201.5820... 10  /   sphere x kg meter sphereρ =  (4.12) 

 

From this we can find a threshold black hole mass, Mkg,TBH for an aggregation of quanta 

by using the following for a flat Euclidean space, where rMax is the reduced 

circumference of a celestial body of maximum density, 

 

1
3

,kg TBH
Max

sphere

M
r

ρ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.13) 

 

Assuming h lr M=  as with an extreme Kerr spacetime 

 

1
3

,
,2

kg TBHN
kg TBH l h Max

sphere

MG M M r r
c ρ

⎛ ⎞
= = = = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.14) 

for an extreme Kerr horizon gives 

 

1
6 2

30
, 3 3.930 10kg TBH

N sphere

cM x kg
G ρ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.15) 

which using the above density gives us the evaluations in the following table or 

approximately two solar masses for the threshold.   

 

Here in column 3, from equation (4.13) we compute the rMax for various celestial bodies, 

Earth, Sun, Milky Way galactic BH and Virgo cluster BH, and include the theoretical 

threshold size black hole and the Universe, as listed in column 1.  “Flat Spacetime” does 

not specify that the pertinent body has no curvature effect on the surrounding spacetime, 

but rather that the curvature of individual quanta, i.e. quantum gravity, is not effected by 
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the aggregate mass and remains the same as for an individual quantum in isolation in flat 

spacetime, i.e. there is no assumed collapse of each quantum waveform toward a 

quantum singularity, though there may be a state similar to a Bose-Einstein condensate.  

The fourth column gives the reduced circumference at the horizon of an extreme, charge 

free, Kerr black hole according to the conventional interpretation of general relativity.  

The fifth column simply makes explicit whether the third column figure resides within 

the fourth.  This indicates that the rest mass quanta inside a black hole horizon could 

congregate at maximum density without precipitating a singularity. 

 

 Mass in kg Radius, rMax in m, 

Density = ρSphere Flat 

Spacetime 

Mass in meters 

2
NG

l kg hc
M M r= =  

Is r within Ml = 

rh at Horizon? 

 

Earth * 245.9742 10x  33.55 34.44 10x −  No 

Sun * 301.989 10x  32.325 10x 31.477 10x  No 

Kerr BH 

threshold 

303.930 10x  32.913 10x 32.913 10x  At Horizon 

Milky Way * 365.2 10x  53.20 10x 93.86 10x  Yes 

Virgo cluster * 396 10x  63.36 10x 124.45 10x  Yes 

Universe 531.67 10x =  

8010 nucleon  

111.02 10x 261.24 10x =  

913.1 10x light yrs 

Yes 

*[5] Figures from Exploring Black Holes, by Taylor and Wheeler, Addison Wesley Longman, 2000  

Table 2 - Chart of Various Celestial Mass Geometrizations 
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Of interest is the fact that the universe appears to be within its own horizon, which 

conventionally would tend to imply that its constituents should be contracting, and that 

there are black holes within black holes.  Also the mass in meters being equal to the 

reputed age of the universe times the speed of light seems a bit serendipitous unless of 

course that mass, i.e. the number of currently theorized nucleons, was estimated using the 

above geometrization equation.  But this figure is not the currently estimated extent of the 

universe, which has a lower end range of  78 billion light years or 24 Gpc according to a 

study by Cornish, et al.[6]  Finally it is noted that the hypothetical mass of the known 

universe at maximum density and a radius of 102 million kilometers, would fit inside the 

earth’s solar orbit in flat spacetime.   

 

6 – The Quantum Metric 

 

We turn now to the metric, specifically a chargeless extreme Kerr metric in the equatorial 

plane (the φ coordinates are suppressed), in which the angular momentum parameter, a, is 

equal to the horizon reduced circumference and the geometrized mass, or h la r M= = .  

The timelike metric at the horizon is 

 
22 2

2 2 2 2
2 32

2

2 4 21 1
21

l l l
h

h h h hl

h h

M M a M adr ad dt dtd r d
r r r rM a

r r

τ θ θ
⎛ ⎞ ⎛ ⎞

= − + − − + +⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠− +⎜ ⎟
⎝ ⎠

 (5.1) 

Substituting for la M=  gives 

 
2 32

2 2 2 2 2
2

2 4 21

1

l l l
h l

h h hl

h

M M Mdrd dt dtd r M d
r r rM

r

τ θ θ
⎛ ⎞ ⎛ ⎞

= − + − − + +⎜ ⎟ ⎜ ⎟
⎛ ⎞⎝ ⎠ ⎝ ⎠

−⎜ ⎟
⎝ ⎠

 (5.2) 
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We make the following observation concerning the 2dr  term.  While the conventional 

interpretation is that the term goes to infinity as the denominator approaches zero, and 

any infalling test particle transits the horizon, the math can also be interpreted in terms of 

a limit for radial motion.  A mathematical conflation is at work in the formulation, since 

the differentials are deemed to approach zero in the limit, but are effectively treated as 

dimensional units, i.e. equal to one of some infinitesimal scale.  This is necessary since 

the product of a non zero co-efficient and a zero differential at the limit would be zero.  

This is warranted since we find a similar non-zero differential without a coefficient on the 

left side of the equation.   

 

This is contradicted, however, if the metric component represented by the differential has 

a natural limit where it is necessarily zero.  Thus if the horizon in an extreme Kerr 

spacetime represents that limit, dr equals zero at the limit of that horizon coincident with 

the term in the denominator, the coefficient and the differential cancel.  The result is 

simply -1 as shown below, which when factored gives an imaginary or orthogonal sense, 

i.e. it rotates any differential change into tangency.  The horizon, then, is effectively a 

physical asymptote.  Thus at the event horizon, where h lr r M= =  this simplifies to  

 ( ) ( ) ( )2 2 22 2 2 24 2 2h hd dt r dtd r d dr idt i r d idrτ θ θ θ= − + − − = − +  (5.3) 

This can be factored as a complex number and its conjugate 

 ( ) ( ) ( ) ( )2 2 2h hd idt i r d i idr idt i r d i idrτ θ θ= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (5.4) 

or can be simplified as follows,  

 ( ) ( )2 2 2h h h hd idt i r d dr idt i r d drτ θ θ= − − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (5.5) 
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where hr  is the reduced circumference at the horizon and 0hdr =  is a zero vector with 

respect to the radial, giving a proper time of 

 ( )2 hd i dt r dτ θ= ± −  (5.6) 

 

If we assume that for bookkeeper time the differential is in the plane of the horizon, and 

time as developed earlier flows with the rotational motion of the ergosphere, so that 

 hdt r dθ=  (5.7) 

then the proper time is found to flow orthogonally to that rotational motion, into the 

negative and positive φ coordinates, since 

 d idtτ = ∓  (5.8) 

This will be significant in our statement of the quantum metric. 

 

From this perspective, at the static limit and the start of the ergosphere, where 2 lr M= , 

pure radial motion is no longer possible, and a rotational component or frame dragging 

element is injected into the equation so that at the event horizon, all motion is rotational 

as indicated by the “imaginary” or orthogonal senses. Note that if we consider spacetime 

as an inertio-elastic continuum, frame dragging is simply the wave strain associated with 

a rotational waveform, be it macrocosmic or quantum.  Instead of gravitational collapse, 

this argues that any incremental matter or light accruing to the inertial sink is smeared out 

and bound at the horizon in a state resembling a Bose-Einstein condensate. 

 

We now get to the meat of the matter with an expression of the quantum metric.  The 

dynamics of the quantum waveform is not extremely complicated, but it does involve 
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some rather lengthy, non-standard analysis using methods of complex classical wave 

physics extended to 4 dimensions, and is beyond the scope of the present discussion.  We 

will simply state that its kinematics prevent the orientation entanglement condition.  

 

With reference to Quantum Inertial Sink Diagram 1, the timelike quantum metric is given 

as a modified chargeless extreme Kerr metric.  The modification is in the φ coordinates as 

shown here, where the quantum mass has been explicitly geometrized as 0nr ,    

 ( )( ){ }0

2 2 2
2 2 2 20 0

2
0 0 0

0

2 41

1

i tn n

n n n

n

r r drd dt dtd R d e Ld
r r r

r

ω θτ θ θ φ±⎛ ⎞
= − + − −⎜ ⎟

⎛ ⎞⎝ ⎠
−⎜ ⎟

⎝ ⎠

∓∓  (5.9) 

The caveat stated above concerning the limit of radial motion represented by 0nr remains.  

In the last term, the complex exponential is defined as 

 
( ) ( )( ) ( ) ( )

( )( ) ( )( )

0 0
0 0

0 0

Re cos  or cos

                                 cos or cos

i t i t
ccw cwe e t t

t t

ω θ ω θ ω θ ω θ

ω θ ω θ

± ±= = + +

= + − − +

∓ ∓

 (5.10) 

 

Either the real or the imaginary part could of course be used.  The ccw term indicates 

rotation in the upper hemisphere according to the right hand rule, while the cw term 

indicates clockwise rotation in the bottom hemisphere according to the left hand rule, 

when viewed from the exterior of the corresponding rotational pole.   

 

The plus and minus curly bracket has the following definition and indicates a flipping of 

the sign of the dφ  vector, with every π rotation of θ, plus being parallel and minus being 
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anti-parallel with respect to the RHR spin axial vector.  It thus performs a function 

similar to a mathematical spin matrix.   

 { } ( )
( ) { } ( )

( )
0 0

0 0

cos cos
,   

cos cos
t t

a a a a
t t

ω θ ω θ
ω θ ω θ

− −
± ≡ ≡ −

− −
∓  (5.11) 

 

Obviously, θ and φ rotate at the same frequency, with the axis of the φ rotation rotating in 

the equatorial plane.  This motion avoids the orientation entanglement condition and is 

necessitated by the assumed continuity condition of a classical spacetime continuum and 

the density property postulated in this development.  When analyzed it is apparent that 

the motion is that of a transverse wave traveling in tight orbit around the spin axis, its 

amplitudes inclined toward the poles, analogous to a gravitationally bound, 

electromagnetic wave, and in fact constitutes the magnetic field of the quantum.   

 

This diagram is a cross-section through the spin axis and shows the relationship of the 

static limit, the ergosphere, and the horizon.  The ergosphere is the domain of the strong 

interaction.  The transverse or φ differential is limited in its motion toward the spin poles 

to the point on the static limit where L = 1.   

 

The metric simplifies at the horizon with no radial motion as  

 ( ){ }2 2 2 2 2 2 2
0 04 cosnd dt r dtd R d t L dτ θ θ ω θ φ= − + − −∓  (5.12) 
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Quantum Inertial Sink 1
Figure 14  

 

From this diagram we have the following coefficient component for φ along the 

meridians at the static limit 

 ( ) ( )3 3 3 5 5 34 4
0 0 0 05 5 5 5 4 4 4 4cos cosn n n nL r R r r rβ β= + = + + = +  (5.13) 

Substituting this in equation (5.12) simplifies at the horizon along the equatorial plane of 

a fixed spin axis where cos 1β = , as  

 ( ) ( )( ){ }2 22 2 2
0 0 02 cos 2n nd idt i r d t r dτ θ ω θ φ= − −∓  (5.14) 

The corresponding spacelike metrics is  

 ( ) ( )( ){ }2 22 2 2
0 0 02 cos 2n nd idt i r d t r dσ θ ω θ φ= − − ± −  (5.15) 

giving the fundamental symmetry 

 2 2d dσ τ≡ −  (5.16) 

and for the proper time and space, indicating the orthogonal nature of space and time, 

 d idσ τ≡ . (5.17) 
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This can be represented by the following anti-symmetric orthonormal matrix at r0,  

Direction of ortho normal vector dxi with respect to  

X Axis Y Axis Z Axis 

X = +1 0 +rdθ sinr tdω φ+  

Y = +1 -rdθ 0 cosr tdω φ−  

Z = +1 sinr tdω φ−  cosr tdω φ+  0 

X = -1 0 -rdθ sinr tdω φ−  

Y = -1 +rdθ 0 cosr tdω φ+  

V
ec

to
r d

x i 
or

ig
in

at
in

g 
at

 

Z = -1 sinr tdω φ+  cosr tdω φ−  0 

Table 3 - Quantum Anti-Symmetric Orthonormal Matrix at r0 

 

In the presence of an anti-parallel external magnetic field as shown in Quantum Inertial 

Spin Diagram 2, the quantum spin axis inclines toward the equatorial plane and precesses 

about its initial position.  The resulting coefficients of ½ spin can be seen here.  Note also 

that the Heisenberg “observational” uncertainty is limited by the inverse curvature of the 

horizon to  

 2
0 0 0lr c m r c c= = =t . (5.18) 
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Quantum Inertial Sink 2
Figure 15

 

 

 

Full Model Development 

 

This model is elsewhere more fully developed and presented as the 3-D representation of 

a classical 4-D oscillation.  Expansion acts as an EMF that drives the fundamental 

frequency, both by mechanical analogy and as the actual mechanical or piezoelectric 

basis for electro-magnetism.  The rest-mass quantum is thus a small simple harmonic 

oscillator, with a potential-kinetic, capacitive-inductive energy cycle, in a general 

inductive mode during expansion, of which the waveform of ordinary matter is the result.  

During universal contraction, a capacitive mode ensues, resulting in a predominance of 

anti-matter.   

 



 79

Over a short period of time, in particular in the absence of confinement at nuclear 

density, expansion leads to a drop in mechanical impedance, resulting in a transmission 

of energy and power at the boundary of a neutral or resonant quantum.  The result is beta 

decay, which is tuned to the expansion rate for any isolated neutral quantum and 

generates the electromagnetic interaction, which is properly considered an intra-action of 

the spacetime continuum.  The rest-mass ratios between the neutron, electron and proton 

and the “missing” mass of beta decay arise naturally in this analysis.  Finally, quark 

phenomenology of fractional charge is shown to be the property of the nodes and 

antinodes of the quantum waveform.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 80 

Endnote 

                                                 
i A derivative taken on a flat rectilinear area,  

( ) ( )2 2 22d r dr rd rdr dr
dr dr dr dr

Α ± Α − Α ± −± Α ± +
= = =  

gives a differential area of 
22d rdr dr± Α = ± + . 

Now consider a hyperbolic surface, specifically the derivative of the inverse curvature of a pseudosphere, 
which is of constant negative curvature, for simplicity 1k = − , where ri is the interior radius and re is the 
exterior radius, and we have the function, where either re or ri, could be used as the variable 

( )1 1 1
er e e e i ek k r r r rr− − −= = − = −  

 The curvature is conserved, therefore the differential is zero or 
 

( )( ) ( )1 0
er i i e e i e i e e i i edk r dr r dr rr rdr r dr drdr− = − − − − − = − + =  

 
The senses of the radii and their differentials indicate a direction toward (+) or away from (-) the exterior of 
the pseudosphere.  Note that the differentials are of the same sense.  Thus the above equation indicates a 
change toward the mouth or rim of the pseudosphere, as ri is increasing and re is decreasing.  At the point 
of normalization, where 0 1i er r r= = = ,  
we have 

e i i edr dr drdr− = − . 

Therefore 1 1,i e i edr x dr x drdr−= − = − ∴ = and after a sense inversion we have the solution 
1 1x x−− =  

5 1
4 2 1 618033. ...x = + = = Φ  

the well known coefficient of conservative evolution of a system. 
Note that the product ( )( )1 1 1x x− =  is conserved. 

At the point where 1
ir

−= Φ and er = Φ  ,  
we have, where the differential senses are explicit, 

( ) ( ) ( )( )i e e i i er dr r dr dr dr− − + − = − − −  

and we can normalize the differentials at ( )1
er

k − Φ  as 

i e odr dr dr= =   
giving 

1i e

e i

dr dr
dr dr

= =  , 

therefore 
2 2 2

0 0i edr dr dr d= = = Α . 
Then the invariant inverse curvature is equal to the square of normalized differentials 

( )1 2
0 0 1

er i e i ek r r drdr dr d− Φ = − = − = − = − Α = − . 

However, for any such conservative hyperbolic system of any invariant finite curvature, we can state the 
following,  

1  ,i i e edr r dr r−= Φ = Φ , 
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so that 

i e i edrdr rr=   
and we have the following relationship between the inverse curvature function and its differential 
components 

1 1 1 1
e e er r r i e e i i e e i i e i ek k dk rdr r dr rr r r drdr rr− − − −= + = − = − Φ + Φ = − = − . 

Finally, with some substitution, for the function and its derivative, as 

2
i

i e
e

rdr dr
r

=
Φ

 and 
1

er
i

e

k
r

r

−−
=  

we have, with rearrangement and simplification 

( )
1 1

1 1 2 1 1 1
2 1 ln lne e

e e e e

r r
r r e e r e r e

e e

k k
k dk dr dr k d r k d r

r r

− −
− − − − − −

− −
+ = − = − − Φ = −Φ

Φ
. 

The symmetrical condition for 1
ir

k −  is 

( )
1 2 1

1 1 2 1 11 ln lni i

i i i i

r r
r r i i r i r i

i i

k k
k dk dr dr k d r k d r

r r

− −
− − − −

− Φ −
+ = − = − Φ − = −Φ , 

and obviously 
1  ln , lni ed r d r−= Φ = Φ . 

 
Since  

1 1 1ln ln
e ii e r e r idrdr k d r k d r− − −− = −Φ = −Φ  

we have 
1 1 1 1 0ln ln

i e e ir r r e r idk k d r k d r− − − −= Φ − Φ = , 

and finally 
1 2 1 1 1

0 0 ln ln
e ii e r e r ik d dr drdr k d r k d r− − − −= Α = − = − = −Φ = −Φ . 
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