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Appendix D - Exponentiation 
 
Calculus is the study of the rate of change in one variable quantity, conventionally 
denoted by a y, which is held to be a function, f, wholly or partially, of another variable, 
generally denoted by an x or sometimes a t.  This underlying functional relationship 
between the variables is denoted by 
 ( ) ( ) or y f x y f t= = . (7.23)  
In the case of a partial function, a function of more than one variable, we write  
 ( , )y f x t= . (7.24) 
Thus, with (7.23) when x a= , y b= , and with (7.24) when  and x a t b= = , y c= .  a, b 
and c are arbitrary symbols standing for unknown quantities of the stated variable x, t and 
y, and depending on the context and circumstance a, b and c may in fact be the same or of 
equal value.   
 
The underlying functional relationship or function does not necessarily indicate that x 
causes y or that y is the operational function of x.  While this may be so in the case of 
some physical and organizational conditions, in general terms the function simply 
indicates that when x has the value of a, y is always, within the context determined by f, 
uniquely observed to have the value of b.   
 
Thus, given a right triangle of variable angle, α, but fixed, unit length hypotenuse, the 
cosine can be stated as a function of the length of the adjacent side, a, and the length of a 
can be stated as an inverse function of the cosine.  In the language of mathematics, we 
would say that the cosine function maps the value of a onto the cosine and the inverse 
function maps the value of the cosine onto a.  This concept of mapping reflects the fact 
that any function that we might consider can be visualized and charted against the 
backdrop of an orthogonal co-ordinate system. 
 
Thus it may equally be true that  
 ( ) or ( )x f y t f y= = .    (7.25) 
Note that it is not generally stated that 
 ( ),x t f y= ,     (7.26) 
although that may in fact be the case.  If x is the adjacent side of α and t is the opposite, 
they both vary with respect to some variation in the angle, y α= .   
 
While it may be of interest to know the value of y for any value of x or t, it is often of 
equal or greater interest to know the rate at which y is changing for any value of x or t.  
This rate of change or ratio of variability of one quantity with respect to another is known 
as the derivative function, f ′, of y with respect to x or t, or 

 ( ) ( ) or dy dyf x f t
dx dt

′ ′= = .    (7.27) 

The quantity dy is the differential amount of change in y that occurs for every differential 
amount of change, dx, in x.  While dy and dx are customarily envisioned as being 
infinitesimally small, they are generally not small by the same proportions, and are 
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indeed expressed as the change in y in units of that quality for every change of one unit of 
x.  Hence they are often used in partial derivative form as direction cosines, where by 
implication, x∂  would be the hypotenuse of a right triangle of unit value and y∂  is the 
adjacent side.  Here f ′ constitutes another function of x, with the prime notation 
indicating that it is a derivative function of f(x).  The single prime is the rate of change in 
f(x) commensurate with a change in x.  If it is a function with respect to time, f(t), i.e. a 
rate of change over some unit of time, it is a speed, or if a direction is specified, a 
velocity. 
 
If the rate of change in f(x) or f(t) is not steady or constant, then we have a second 
derivative of these functions, denoted by a double prime 

 ( ) ( )
2 2

2 2 or d y d yf x f t
dx dt

′′ ′′= = .   (7.28) 

The change in velocity, acceleration, which is the second derivative with respect to time, 
( )f t′′ , is commonly encountered and understood.  The equivalent with respect to x, also 

a type of acceleration, is a change in the intensity or magnitude of some derivative, 
( )f x′ , with each change in x.  Thus if ( )f x′ represents the slope of a mountainside, the 

change in elevation per change in horizontal displacement, when the slope is a constant 
pitch, then ( ) 0f x′′ = , that is, it does not exist.  If the slope gets steeper as the mountain is 
climbed, then the second derivative is positive.  In physics this second derivative of x is 
called the Laplacian.  A force embodying the inverse square law is an instance of the 
second derivative. 
 
If the acceleration, the change in ( )f x′  or ( )f t′ , is not constant, then we have a third 
derivative of these functions, denoted by the triple prime or  

 ( ) ( )
3 3

3 3 or d y d yf x f t
dx dt

′′′ ′′′= = .   (7.29) 

 
With respect to ( )f t′′ , this acceleration of acceleration is known as jerk.  Any change 
from a position of rest involves an element of jerk, since the acceleration from zero to 
any finite velocity is not instantaneous or constant.  With respect to a mountainside, if the 
slope increases exponentially with the climb, instead of at a steady rate of say 50 meters 
per kilometer of horizontal distance covered, then the third derivative is functioning.    
 
In (7.28) and (7.29) it will be noticed that the differential with respect to y is preceded by 
the order of the derivative, while the differential with respect to x and t is followed by the 
order or exponent of the derivative.  This is due to the fact that the latter variables are 
actual squares and cubes, that is powers of the differentials, while the order of the 
dependent differential of y indicates the change in y attributed to the independent variable 
of the same order.  The dimensionality of y is always of what ever happens to be the 
inherent dimensionality of the quality y represents.  If y is a force, dny will itself have 
units of force.  Notice that fn(t), then would have units of force per time to the nth power. 
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A geometric example will perhaps make this clear.  While the following may not be the 
customary context for the second and higher order derivatives, it is a legitimate instance 
of such.  The equation for the volume of a cube, in which the volume, V, is a function of 
the length of one side, all sides being by definition equal, is  
 ( ) 3V f x x= = .    (7.30) 
The inverse function is  

 ( )
1
3x f V V= = .    (7.31) 

 
A change in volume, dV, is still a three dimensional quality, and we might be tempted to 
say that it is equal to 3dx , which in a certain context it is.  If we want to express that 
change as a derivative function, however, we must use the definition of a derivative, 
which gives the original function plus the differential change as 
 ( )3 3 2 2 33 3V dV x dx x x dx xdx dx+ = + = + + + .  (7.32) 
Subtracting (7.30), the terms in square brackets, gives the differential  
 [ ] 3 2 2 3 33 3V dV V x x dx xdx dx x⎡ ⎤+ − = + + + − ⎣ ⎦   (7.33) 

 2 2 33 3dV x dx xdx dx= + +     (7.34) 
This last equation is a bit opaque, however, as it assumes that one of the corners of the 
cube is at the origin of a co-ordinate system and injects a corresponding bias into the 
derivation, which may or may not be warranted.  If we locate the origin at the center of 
cube, while still assuming each side aligned with the co-ordinates, we must assign the 
differential change in x to each end of a length and we have instead of (7.32) 

 
[ ] ( )3 3

3 2 2 3 3

2

                    6 12 8

V dV V x dx x

x x dx xdx dx x

⎡ ⎤+ − = + − ⎣ ⎦
⎡ ⎤= + + + − ⎣ ⎦

  (7.35) 

 2 2 36 12 8dV x dx xdx dx= + +     (7.36) 
From this last derivation, it is immediately clear that the differential volume is made up 
of the six sides of the cube, the twelve edges, and the eight vertices or corners, all times 
an infinitesimal length of varying orders.  The first order derivative, corresponding to the 
six square sides of the cube of measure x2 and the one usually deemed to have the 
greatest significance, is explicitly stated as  

 ( )
1

2
1 6d Vf x x

dx
′ = = .    (7.37) 

The second order derivative, corresponding with the twelve edges of the cube, consisting 
of twelve line segments of length x, is 

 ( )
2

1
2 12d Vf x x

dx
′′ = = .    (7.38)   

The third order derivative, corresponding to the eight vertices, each of zero, or 
technically, vanishing dimension, is  

  ( )
3

0
3 8d Vf x x

dx
′′′ = = .    (7.39) 

Thus for the total derivative or (increasing) change in V with respect to a change in x, we 
have 
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1 2 33

2
1 2 3

1
6 12 8

n

n
n

d V d V d V d V x x
dx dx dx dx=

= + + = + +∑ .   (7.40) 

If V were decreasing, and dx were a decrement, the change would be 

 
1 2 33

2
1 2 3

1
6 12 8

n

n
n

d V d V d V d V x x
dx dx dx dx=

− = − + − = − + −∑ .  (7.41) 

Note that the decrease from the initial condition is indicated by the negative sense of the 
summation, but that the magnitude of the sum in this case is of a positive 6 squares, 
minus 12 line segments, while adding back the 8 vertices.  In more elucidating fashion 
the magnitude of the derivative becomes 

 ( )
1 2 33

2
1 2 3

1
6 12 8

n

n
n

d V d V d V d V x x
dx dx dx dx=

⎛ ⎞
= − − = − −⎜ ⎟

⎝ ⎠
∑ .  (7.42) 

While it is clear that the contribution of the 8 vertices is not effected by the value of x, it 
is obvious that as x increases, the contribution to the sum made by the edges increases 
linearly with x, while the contribution made by the surface squares increases 
exponentially, specifically by the power of 2. 
 
If dx is not quite zero, but exceedingly small compared to x, then it is apparent that the 
order of the derivatives is a fair appraisal of each component’s contribution to dV.  The 
additional volume is predominantly surface differential.  In fact, at the limit as dx 
approaches 0, each order is exponentially greater that the next order in succession.   
However, if the components are allowed to increase exponentially beyond the value of x, 
the situation inverts itself. 
 
If we think of the original cube, still positioned about the origin, as having some very 
small unit edges of length x, where x is the smallest imaginable length, and make the 
change, dx, exceedingly great, in fact approaching infinity, then the first order of six 
squares constitutes the six sense-axes of a 3-D space, the second order, the twelve edges, 
constitutes the twelve quadrants of the x-y, y-z, and z-x planes, while the third order of 
the eight vertices become the 3-D octants of the co-ordinate system. 
 
In the above cubic scenario, it is apparent that the numerical coefficients, which in a 
standard development of the calculus arise through the operation of the binomial 
expansion as with (7.32), are actually inherent aspects of the specific cubic geometry.  
The derivation consists of a division of each of the orders of differentiation by x, n times, 
where n indicates the order of each term.  As such it represents a reduction in the power 
of each term by 1 for each time or order.  Alternatively, we can view this as a 
multiplication for each instance of differentiation of x-1dx.  Thus, with the observation 
that a change in the volume of a cube must occur at its 3 boundary elements, i.e. faces, 
edges and vertices, (7.36) can be arrived at by  
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3 3 3

1 1 1

1 2 3
3 3 3

2 2 3

1 1 1                      6 12 8

                      6 12 8

nn n
n n n

n n
n n n

d V V dxdV dx dx V
dx x x

x dx x dx x dx
x x x

x dx xdx dx

= = =

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + +

∑ ∑ ∑

  (7.43) 

 
Notice that this describes an arrangement of 27 cubes, 3 x 3 x 3, with the original cube of 
volume V at the center, and that the total number of elements in the surface is 26, 
corresponding to the 26 adjacent cubes.  The process of differentiation reduces each of 
these cubes exponentially, according to its relationship to the center cube. The n in nV  
indicates both the magnitude and the geometry of the coefficients that arise through the 
polynomial expansion.  As there are two boundaries to any interval x, and an interval of 
equal magnitude to x at each boundary, xb, a binomial of power n is  
 ( ) ( )2 1 3 1n n n n m m

b bx x x x x−+ = + − .   (7.44) 
As an example, a 4-D hypercube expansion is  
 ( )4 4 4 3 1 2 2 1 3 0 42 1 80 1 8 24 32 16n m m

b b b b b bx x x x x x x x x x x x x x−+ = + = + + + + . (7.45) 
Making the substitution,

0lim
bx dx
→

=  for the case of a 4-D equivalent to (7.43) gives 

 

( )4 4

1 2 3 4
4 4 4 4

3 1 2 2 1 3 0 4

2 80 80

                       8 24 32 16

                       8 24 32 16

m
n m m n dxx dx x x dx x

x

dx dx dx dxx x x x
x x x x

x dx x dx x dx x dx

− ⎛ ⎞+ − = = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + +

 (7.46) 

 
As this is obviously a logarithmic operation, as indicated by the bracketed terms, where  
   logn

xx y y n= ∴ =     (7.47) 
and as the derivative of the natural log is 

 1ln loged x d x dx
x

= = ,    (7.48) 

we can recast (7.43) as  

 
( )

( ) ( ) ( )

3 3

1 1

1 2 33 3 3                          6 12 8

ln

ln ln ln

n
nn n

n
n n

d VdV dx V d x
dx

x d x x d x x d x
= =

= =

= + +

∑ ∑
 (7.49) 

This last observation suggests a fundamental tie-in between the derivative of a 
polynomial function and that of the natural logarithm. 
 
With this in mind, it is apparent that the matter of differentiation is closely related to the 
subject of exponentiation, and appears to consist of reduction by one power or order of 
exponentiation for each order of differentiation.  In the case of the cube, it is clear that 
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each order indicates an orthogonal reduction, from cube to square, to line segment to 
point.   
 
We might wonder if this is the case for all functions of the form of (7.23).  We might, for 
example, have a function that relates the perimeter of a square to its edge.  The resulting 
equation and its derivative are 

 
[ ] [ ]

4
4( ) 4

4

4

P x
P dP P x dx x
dP dx
dP
dx

=

+ − = + −

=

=

   (7.50) 

What is different in this case, is that there is no apparent second derivative.  In other 
words, for 

 ( ) 4dP f x
dx

′= =     (7.51) 

the function ( )f x′ is not affected by the value of x.  It is a constant and does not involve 

a rate of change of ( )f x′  with respect to a change in x.   
 
Any function that does not change has a first order derivative of 0.  This does not mean, 
however, that it might not have a second order derivative.  Metaphorically speaking, the 
water swirling around a drain might be described by some function that maps its motion 
around the plane of the water’s surface.  At the point at which it becomes vertical and 
disappears down the drain, effectively leaving the dimensional space of the tub, the 
derivative with respect to change in that space vanishes.  Obviously there still must be 
some function describing its motion vertically and perhaps even horizontally once it has 
entered the plumbing system, albeit, in terms of that other dimension.  The key is to 
realize that (7.51) actually should be written 

 ( )04 4 1 4( ) lnx
dP f x x x
dx

′= = = =    (7.52) 

 

( )

2

2

2

4

4   

lnx

d P
dxd x

d P f x
dx x

∴ =

′′= =

    (7.53) 

 
There is another condition, however, in which, although there is a changing rate of 
change, there is no apparent change in the rate of change, i.e. no apparent second 
derivative, and that is the case of the exponential function, specifically of the natural base 
e, inversely related to the natural logarithmic function.  The exponential function is its 
own derivative, of whatever order we might envision, where 
 ( )  iff lnxf x y e y x= = =     (7.54) 
so that 
 ( ) ( ) x x

x xf x D f x D e e′ ⎡ ⎤= = =⎣ ⎦    (7.55) 
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where Dx is a differential operator, that is, it operates on f to produce f ′ .  Thus since 
 x x x x

x x x xD e D D e D e e⎡ ⎤ ⎡ ⎤′′ = = =⎣ ⎦ ⎣ ⎦    (7.56) 
the difference between any two orders of differentiation, in fact, between any order and 
the exponential function itself is  
 0x x x x x x

x x xD e D e D e e e e′′ − = − = − = .   (7.57) 
and 

 1
x

n x
x

e
D e

=      (7.58) 

 
We might wonder what significance this has, since subtracting one order derivative from 
another is rather like subtracting oranges from apples.  They are two different types of 
entity, just as a point is a different type of entity than a line segment or length, which is 
itself different from an area, itself different from a volume.  In fact, there are generally 
held to be an infinite number of points in a length, lengths in an area, and areas in a 
volume, i.e. of dimensions in the next higher order of dimension, so the subtraction of the 
lesser from the greater leaves the latter substantially unchanged.   
 
This then is the point in (7.58).  The dimensional identity of each order of differentiation 
is the same as that of the basic function, f(x) = y, since it is the exponent itself that is 
variable and not the base.  If we compare this condition with that of the cube and its 
derivative orders, in which the relative contribution of each order to the overall change in 
V is dependent on the ratio of dxn:dx, we see that for an exponential change, the relative 
contribution of each order at the limit is unaffected by the change in x, or as it is often the 
variable used in this context, t.  The ratio in the exponential case is always 1, hence the 
apparent lack of change.   
 
A doubling of the sum of the lengths of the edges and a quadrupling of each surface area 
results in an eightfold increase in the volume of the cube.  Note that there is no change in 
the number of boundary elements and their angular configuration, which is the defining 
condition of the cube.  Using a combinatorial or additive approach to creating a change in 
the cube, then, we see that it is more economical to augment the edges to move the 
vertices further apart, which defines the volume change, than to fill the cube with 
volume, since a unit of length is orders of magnitude less than a unit of volume.  Yet 
there is no conformal or topological difference between a cube of unit volume and one of 
volume 8, something we intuitively understand.  The matter of scale only attains 
significance within a combinatorial or economical approach.  
 
Hence in a continuum analysis, where the elements of various dimensions are integrally 
related, i.e. non-combinatorially, if we had a cube experiencing a continuous exponential 
change, each of the elements in its boundary, the faces, edges and vertices, would 
increase proportionally to its order with the change in volume, each derivative order 
increasing in proportion as the exponent of x or t.  In such event, using the value of 

3x V=  as our standard, all orders show the same exponential change and the whole is 
relatively, or perhaps better stated, intrinsically unchanged. It is only within the context 
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of some extrinsically determined property, such as some external standard of length or 
density, i.e. volume, surface or linear, that change is registered or observed. 
 
This is intuitively understood, especially in the preparation of scaled engineering 
drawings and models and other graphic representations.  It is also known rarely to occur 
in the physical world in which physical forms result from the combination of discrete 
units or building blocks of matter.  Adult humans do not generally look like babies three 
to four times their original length.  Equally true, most tree girth-to-height ratios increase 
with growth.  On the other hand, most celestial bodies of any size assume a generally 
spherical shape, irrespective of their volume.  Rephrasing (7.43) 
 

 

1
3 3 3 3

3 3
1

1 1 13 3 3

1 2 31 1 1
3 3 3

1 1 1
3 3 3

3 1 1 3 2
3 3 3 3 3

                      6 12 8

                      6 12
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n nnn
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Vd V dVdV dV dV V
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dV dV dVV V V
V V V

V dV V

= = =

− −

⎛ ⎞
⎜ ⎟= = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

2 3 3 3
3 3 3 3

2 1 1 2 0 3
3 3 3 3 3 3

8

                      6 12 8

dV V dV

V dV V dV V dV

−⎛ ⎞
+⎟ ⎜ ⎟

⎝ ⎠

= + +

 (7.59) 

 
From another but still exponential perspective, in terms of our initially outlined derivative 
orders, this indicates that the magnitude of displacement, velocity, acceleration, and jerk 
might be equal or 
 ( ) ( ) ( ) ( ) ( ) ( ) 0f x f x f x f x f x f x′′′ ′′ ′′ ′ ′− = − = − = .  (7.60) 
This is essentially the same equation as (7.57) and indicates that a relationship of this 
type is exponential in nature.   
 
We do not have to look far for another familiar instance of such.  While change is 
generally equated with motion and thereby with displacement or translational change of 
position, rotation presents an instance of motion without translational displacement, 
taking the position of the rotating body as a whole.  It is in a sense change without 
change, and is elegantly presented using the Euler identity, which involves the 
exponential expansion of an imaginary logarithm or 
  
 cos sinixe x i x y= + =     (7.61) 
 
As with the exponential function of (7.54), the domain of x is the real number line, but in 
this case, instead of the range of 0y > , y oscillates over the range of 1 1y− ≤ ≤  if we 
consider only the real component, for each change in x of 2π, our angles and the “natural” 
unit of x in this case being in radians.  Otherwise y must be a complex number whose 
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range is a circle centered on the x-y origin in the complex plane, in this case of implied 
radius r = 1.  If we then map y to the real x-y plane, by multiplying y times its complex 
conjugate, where y then gives the radius r and x is the count of the rotations, the range of 
y will be a horizontal line crossing the y axis at y = r = 1.  Note that a circle of fixed 
radius from the origin maps as a horizontal line segment of 2π length.  Since the 
derivative of such a line is zero, the rate of change of the rotation is zero, at least in this 
mapping.  The only variable in such case might be the velocity of the rotation which 
might be reflected in the scale, the density, of the real number line.  Presumably a denser 
placement of the integers would represent a greater velocity.   
 
The use of a radian as the unit measure of x makes the equation self normalizing, that is, 
it sets the x and y axes of a co-ordinate system against which we might plot the function 
to the same scale.  Assuming a rotational amplitude or modulus, i.e. the radius, r, equal to 
the hypotenuse, selection of a unit value for the y axis for a cosine of 1 automatically 
dictates the unit length for the x axis, since a radius, r, and a rotational arc of one radian 
measured at a distance r from the center are of equal length.  We can then envision x as 
the distance traveled by a point P on the circumference of a rotating disk or equator of a 
sphere of radius r, but it might simply be a point in space that is revolving about some 
center of oscillation which is also the polar origin.   
 
Thus for any value of x,  

 
2 2
x n ϕ
π π

= +      (7.62) 

where n is an integer number of rotational cycles, n−∞ < < +∞ , and where ϕ  is a 
remainder angle or phase in which 0 2ϕ π< < .  As we shall soon see, we might also state 

 2

2

x n ϕ
π π

= +      (7.63) 

where n is the count of the number of times that |y | equals one.   
 
If we want to express x in some conventional unit such as meters, we simply multiply it 
by the number of meters per radian and x will be in units of meters.  In such case, in order 
to convert x back to normalized units, (7.61) becomes  
 cos sini xe i yκ θ θ= + =     (7.64) 
where κ is the angular wave number or number of arc radians per unit of length and  

 
x
θκ = .     (7.65) 

A similar approach for t gives us 
 cos sinite t i t y= + =     (7.66) 
where time is in natural units or radians, and for conversion from conventional units of 
time, 
 cos sini te i yω θ θ= + =     (7.67) 
where ω is the angular frequency or number of arc radians per unit of time and 
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t
θω = .     (7.68) 

Such a condition would apply to a standing wave of fixed angular frequency.   
 
For a wave of fixed frequency traveling from a propagating source, we can combine the 
two to get 
 ( ) cos sini x tie e i yκ ωθ θ θ+= = + =    (7.69) 
where it is understood that x and t are of ambivalent sense.   
 
Finally by extending the exponent of e to complex numbers we have, 
 ( ) ( )cos sini x tr i r i re e e e e R i yκ ωθ θ θ θ± +± ±= = = ± =   (7.70) 

 ( ) ( )1 cos sini x tr i r i re e e e e i y
R

κ ωθ θ θ θ± +− ± − ± −= = = ± = ,  (7.71) 

and we can see that (7.69) is simply a special case of these last two in which R = 1.  

Assuming that 1R > , using ( )22y r a ib= = − , (7.70) now maps to the x-y real plane as 
a horizontal line greater than y = 1, and (7.71) maps to a line between the x axis and the 
line y = 1.  The argument, as the middle term of (7.64) is called, conceals the fact that the 
sense of the angle θ determines whether isinθ is positive, changing in a counterclockwise 
sense, or negative, in a clockwise sense.  Thus we could apply a convention in which the 
negative sense of isinθ maps (7.70) and (7.71) to horizontal lines crossing the negative y 
axis.  The rotation velocity and frequency would then switch sense. 
 
Let us examine the function  
 ( ) Wy f W We= = .    (7.72) 
Inverting the function so that  
 ( )W f y=      (7.73) 
gives 
 
 ( ) ( )f yf y e y= .    (7.74)  
We can find that  
 ( ) ( ) ( ) ( )f y W nf y e W n e y= =     (7.75) 
 
where W(n) is related to the Lambert W function and in fact is identical to that function 
for the principal branch, integer values 0n > , or Lambert W(0, n>0).  As will be shown, 
while the Lambert W function is complex for all values of 0n < , for all values of 

n−∞ ≤ ≤ +∞  W(n) is real and W(n) = - W(-n).  Further, we define 
 ( ) lnW n n x= .    (7.76) 
Therefore, (7.75) becomes 
 ( )lnln lnn x n

nn xe n x x U n y= = = .   (7.77)  
where Un is the co-efficient of n needed to produce x for any value of y.  
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Inverting the function to its original  
 lnny nx x=      (7.78)  
and differentiating gives 

 
( ) ( )

( ) ( )

1

1    

ln ln

ln

n n

n n

dy nx d x n x nx dx

dxnx n x nx dx
x

−

−

= +

= +
   (7.79) 

with the derivative 

 ( ) 11 ln ndy n x nx
dx

−= +     (7.80) 

If we substitute for the natural log derivative, we have instead 

 ( )1 ln
ln

ndy n x nx
d x

= + .    (7.81) 

 
From (7.76) it follows that 

 ( )( ) 11 ndy W n nx
dx

−= +     (7.82)  

and with a little foresight, we might imagine that this hides a complex function, as with  

 
( )( )

( )( )

11

1
ln

n

n

dy iW n nx
dx

dy iW n nx
d x

−= +

= +
    (7.83) 

 
Returning to (7.76) for that case in which 1nU = , y n= and the normalized value of W(n) 
is  
 ( )0 ln nW n n x= ,    (7.84) 
where the n in the subscript of x relates that value of x as the unique normalizing value 
for ( )0W n and we have 
 

 ( )( ) ( )0 lnn n
n n n

n

yW n x n x x n
U

= = = .   (7.85) 

It follows that  

 ( )0 1ln n
n nn n

n n n

W n yx
n x nU x

κ= = = = .   (7.86) 

As before, substituting t for x, the equivalent for (7.86) is 

 ( )0 1ln n
n nn n

n n n

W n yt
n t nU t

ω= = = =    (7.87) 

Finally, continuing in that vein  
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( )

( ) ( )

1

0

1 1

1 1

              ln ln

n

n n
n n

n n
n n

W n
t n x

t x

ω κ
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

= =

   (7.88) 

            
Since for that case in which 0n = , (7.86) becomes 

 ( )0 0
0 00

0

0 1 1
0

ln
W

x
x

κ= = = = ,   (7.89) 

apparently  
 1 1

0 0 0 0 and x e e e eκ − −= = = =     (7.90) 
and the dividend in the first term of (7.86) must be a continuous function which 
approaches 0 as n approaches 0.  Thus for any n, we have a fundamental base en in which 
it can be stated 

 ( )0
0ln ln n n n

n n n n n

W n
x e e e e

n κ
−

−= = = = = .   (7.91) 

and for the inverse of xn 

 ( )01 1
0 0ln ln ln n n n

n n n n n n

W n
x e e e e e

n κ
− − −

− −

−
= = = = − = − = − .  (7.92) 

where we define, for conceptual reasons, 
 n n n

n n ne e eκ
−

−≡ ≡ .    (7.93) 
 
It is noted that the natural log in the second term is specified to apply to the case of (7.89) 
so that for any value x, for the conventional natural log x, or ln x, 
 0

0
ln ln lnn

n
x x x

=
= = .    (7.94) 

Thus for any en, we have  
 0 1ln lnn

n n n ne e e= =     (7.95) 
and 
 0ln lnn

n n nx e x y U n= = = .    (7.96) 
In continuation, we have 

 
    

0 0

n n
n n

y
e yey

ne e e x−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= = = ,    (7.97) 

 0

n n n n
n n n nye ye ye yey

n n n ne e e e e
− −

− −− −
− −= = = = ,   (7.98) 

 0

n n n n
n n n nye ye ye yey

n n n ne e e e e
− −

− −− −−
− −= = = =    (7.99) 

 
and  

 0
lnln lnn n nn

n n n n nn
n

xx e x e y e U n
e − − −= = = = ,   (7.100) 

 
It follows with respect to derivatives that 
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 01 ln lnn n
n

d x d xe
x dx dx−= = .    (7.101) 

It is further noted that  
 ( ) 1ln lnn nx x −

− =     (7.102) 
 
For all integer values of 0n > , we redefine (7.85) and have 
 ( )0ln n

ny nU n x x= =     (7.103) 

 
0 0ln ln

n nnU ynx
x x

= =     (7.104) 

 
0 0ln ln

n nU yx
x n x

= =     (7.105) 

and 

 0ln n
n n

U yx
x nx

= =     (7.106) 

Multiplying (7.104) by (7.101), gives 

 ( ) 1

0 0

1 ln ln
ln ln

n n
n n n n n n n n

x
nU e d x e d xyD x nx nx

x x dx x dx
− − −⎛ ⎞ ⎛ ⎞⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (7.107) 

and it can be seen that the terms on the right are equal to the derivative of xn. 
 
With some rearrangement we have 

 ( ) ( )
0 0

ln ln
ln ln

n n nn
n n n nn

Udx yx n ne d x ne d x
x x n x− −

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

.  (7.108) 

Since the terms in brackets in (7.108) are equal, it is apparent that the differential of any 
variable x of order n, of any function f(xn), is the product of that function and  

 ( )0 0ln ln lnn
n n n

dxn nd x ne d x W n d x
x −= = =   (7.109) 

where the term n
nne−  is equal to W0(n) and to the principal branch value of the Lambert 

W function for n.  It follows that the derivative of x with respect to the nth natural log is  

 ( )00ln
ln ln

n
n

n n

W nxd xdx e x x
d x d x n−= = =    (7.110) 

which normalized to the nth power would be 

 ( )001 ln
ln ln

n
n n

n n

W nd xdx e
xd x d x n−= = = =    (7.111) 

 
A factor for normalizing to the 0th power, therefore, would be, en

n, remembering (7.93), 
giving 

 ( ) ( ) ( )( )00 00
0 01 ln

ln ln
W nn n n n n

n n n n n
n n

W n W nd xdxe e e e e e
xd x d x n n−= = = = = . (7.112) 

 
where the last term is of the form of (7.75).   
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For a negative derivative 

 ( )001 ln
ln ln

n
n n

n n

W nd xdx e
xd x d x n−

−−−
− = = = − =    (7.113) 

the factor is - en
n, so that 

 
( )

( ) ( ) ( )( )0

0
0

0 0
0

1

   

ln
ln ln

n n n n
n n n n

n n

W nn
n

d xdxe e e e
xd x d x
W n W n

e e
n n

−

−−
= − = − = − −

− −
= − = −

  (7.114) 

 
If we now introduce a rotational (imaginary) element into this condition, from (7.86) and 
the above development, we have 

 
( )

( )
0 0 0 0

n n
n n

W in
W inie inei in nn

n n ine e e e e e e− −= = ∴ = = =   (7.115) 

 
( )

( )
0 0 0 0

n n
n n

W in
W inie inei in nn

n n ine e e e e e e− −

−
−− −− −

−= = ∴ = = =   (7.116) 
in which (7.115) and (7.116) are complex conjugates, each representing a unit vector in 
the complex plane, so that 
 1 0in in

n ne e i− = + .    (7.117) 
It follows that 

 ( )001 ln
ln ln

n
n n

n n

W inid xidxi ie
xd x d x n−= = = = .   (7.118) 

implying 
 ( ) ( )iW n W in= .    (7.119) 
 
Thus with substitution from (7.96), using the normalizing factor -ien

n, (7.118) becomes 

 
( ) ( ) ( )( )0

0
0

0 0
0

1

   

ln
ln ln

n n n n
n n n n

n n

W nn
n

id xidxie ie ie ie
xd x d x
W in W in

ie ie
n n

−⎡ ⎤= − = − = −⎣ ⎦

= − = −

  (7.120) 

 
Similarly for a clockwise rotation,  

 ( )001 ln
ln ln

n
n n

n n

W inid xidxi ie
xd x d x n−

−−−
− = = = − =   (7.121) 

we have the normalizing factor, ien
n, and 

 
( )

( ) ( ) ( )( )0

0
0

0 0
0

1

   

ln
ln ln

n n n n
n n n n

n n

W nn
n

id xidxie ie ie ie
xd x d x
W in W in

ie ie
n n

−

−− ⎡ ⎤= = = −⎣ ⎦

− −
= =

  (7.122) 
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In the above treatment of (7.118) through (7.122), we have used real normalizing factors 
with imaginary sense.  It is further noted that the normalizations shown in the square 
brackets of (7.120) and (7.122), where the left n

ne∓  operates on the right  initial 
condition, n

ne−± , are instances of a type of complex inversion and are therefore 
conformal and are not instances of complex conjugation as shown in (7.117).  In this 
latter case we interpret the subscript as the real exponent, n, of the nth exponential base 
and the superscript as the rotational or “imaginary” exponent.  In this regards we will find 
that 
 in n

n ine e=      (7.123) 
so the determining indication for the rotational exponent is the presence of the i sense.  
Thus we have the following complex identities 
 in in n n in in n n

n n in in n n in ine e e e e e e e− − − −
− − − −≡ ≡ ≡ = ≡ ≡ ≡   (7.124) 

where the terms on the right are the complex conjugates of those on the left, all of which 
represent unit vectors whose points lie on the unit circle.  Thus it is not to be interpreted 
in the usual sense of a decomposed complex number, since 

 ( ) ( )in nn in in n in
e nz e e e e e= + ≠ = ≡ .   (7.125) 

 
 
We might also surmise that the above normalizations are analytic. The normalizing factor 
inverts first with respect to sense of the nth degree of the exponential base, e-n, on the unit 
circle, which amplifies the modulus or vector length of that base.  This changes (7.117) to 
 0 1 sinin in in

n ne e e i θ− = = + .    (7.126) 
This is followed by inversion in the real axis to get 
 ( )0

0 0 0 0 1 0 1 0sin sinin in in in in
n ne e e e e e i i iθ θ− −

− = = = + + − = + .  (7.127) 
where it is clear that the 0th exponential base raised to the 0th power is a unit vector on the 
real, x axis.  Thus complex normalization in this instance amounts to  
 0

0 1 0in in
n ne e e i−

− = = +     (7.128) 
and complex inversion to  

 
0

01 0 in
nin in

n n

ei e
e e

−

− −

+
= =     (7.129) 

 
which is an amplitwist as defined by Tristan Needham in Visual Complex Analysis.  This 
is the case of the bracketed term of (7.120), which might be represented by multiplication 
of a point in the counterclockwise interior of the unit circle by its reflection in that circle 
followed by multiplication of the resulting vector and its complex conjugate. In the case 
of (7.122), we have such multiplication of a clockwise interior vector by a 
counterclockwise exterior vector, both cases resulting in a unit vector along the real axis.   
 
With respect to (7.89), we see that what appears at first glance to be a singularity is in 
fact an identity of the 0th order.  Remembering that the natural log function maps to the y 
axis and is therefore equivalent to the imaginary axis in the complex plane and isinθ, 
using the normalization factor, e0

0 = 1, and recalling that xn = en 
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 ( ) ( )000 0 0 0
0 0 0 0 0

0
1 0

0
ln Wi i i iW

e x e e x x i+ − + −= = = = ± .  (7.130) 

The sense of the 0th powers can be seen as a vector potential or direction, similar to the 
assignment of charge sense in a static electrical or potential field.  
 
Investigation will show that for any n or q, real or imaginary, 

 ( ) ( ) ( ) ( )

0ln
W n W qW n W qdx e e

xd x n q
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

   (7.131) 

Applying the above normalization factors to (7.83), we have 

 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

1 1
0 0 0

0 0 0ln

W n W n W n n n n
n

W n W n W n n n n
n

dyie ie W n e nx ie n nx
dx

dyie ie W n e nx ie n nx
d x

− −− = − + = − +

− = − + = − +
. (7.132) 

 
The interpretation of this development is that while the qth exponential base to the qth 
power maps the real number line x to the positive real number line y, the qth exponential 
base to the iqth power or the iqth exponential base to the qth power maps the real number 
line to the unit circle.  Further, whereas there is an asymptote for the former in the 
direction of the negative x axis, the unit circle is both asymptote and tangent in either 
sense for the rotational mapping of e.   
 
With respect to the integer orders of e, it is apparent that each represents a mapping to the 
real number line of an exponential change in n orthogonal spaces.  Thus referring to 
(7.88) in the context of (7.112), we can state the following normalizations of an n 
dimensional t or x 

 
( ) ( )

( )

1
1

0

1

1

              ln

n
nn n

n n n
n

n
n n

W nee e
t n

e t

ω
⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

=

 and   (7.133) 

 
( ) ( )

( )

1
1

0

1

1

              ln

n
nn n

n n n
n

n
n n

W nee e
x n

e x

κ
⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

=

.   (7.134) 

 
Fleshing this out for the first 4 orders of n with conjectured generalization at infinity, we 
have the following table, as generated by Maple, where it can be seen that a negative n is 
simply an inversion of en

n to en
-n = e-n

n. 
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f(n) n 0 1 2 3 … ∞ 
en 2.718281828.. 1.763222834.. 1.531584394.. 1.419024454.. 1

e−n=en
-1 0.367879441.. 0.567143291.. 0.652918640.. 0.704709490.. 1

  
en

n 1 1.763222834.. 2.345750756.. 2.857390779.. ∞
e−n

n= en
-n 1 0.567143291.. 0.426302751.. 0.349969632.. 0

  
ln0 en 1 0.567143291.. 0.426302751.. 0.349969632.. 0

ln0 e−n -1 -0.567143291.. -0.426302751.. -0.349969632.. 0
  

lnn en 1 1 1 1 1
lnn e−n -1 -1 -1 -1 -1

  
ln0 en

n  

= W(n)  
0 0.567143291.. 0.852605502.. 1.049908893.. ∞

ln0 e−n
n 

= W(-n) 
0 -0.567143291.. -0.852605502.. -1.049908893.. -∞

  
lnn en

n 0 1 2 3 ∞
lnn e−n

n 0 -1 -2 -3 -∞ 
  

 
n f(n) n ln0 en in ln0 en n ln0 ien  in ln0 ien
1  0.5671… i0.5671… 0.5671…+iπ/2(=+1 iπ/2) - π/2 + i0.5671…
2  0.8526… i0.8526… 0.8526…+i π(=+2 iπ/2) - π + i0.8526…
3  1.0499… i1.0499… 1.0499…+i3π/2(=+3 iπ/2) - 3π/2 + i1.0499…
4  1.2021… i1.2021… 1.2021…+i 2π(=+4 iπ/2) -2π + i1.2021…
5  1.3067… i1.3067… 1.3067…+i5π/2(=+5 iπ/2) - 5π/2 + i1.3067…
6  1.4324… i1.4324… 1.4324…+i 3π(=+6 iπ/2) -3π + i1.4324…

 
In this final table, it is clear that the integers, n, are the count of the rotations of ½ π and 
of the powers and hence the number of orders of i, both indications of a degree of 
orthogonal structure.   
 
The special case of e2 is shown to be of fundamental significance to an understanding of 
the foundations of quantum mechanics.  Thus 

 

( )

( )

( )

1
2

1
2

1
2

2 2

2

2

1   

1   

   1 531584394

ln

ln

ln

. ...

e e

t t

x x

ω

κ

−

−

−

=

= = ∂ = ∂

= = ∂ = ∂

=

 (7.135) 
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With respect to a conservative 3-field, here shown for a stress, where the volume 
potential energy density is conserved, a logarithmic change of the tension fields in one 
dimension, leading to a change of opposite sense in the two shear fields,  
 ( )( )( ) 1 1ln T T T Eξ η ζ∂ ∂ ∂ = =  (7.136) 
is therefore 

 ( )
1
2

, lnT Tη ζ ξ

−
∂ = ∂  (7.137) 

which can be stated by using the coefficients as 
 ( )

1
2

2 0 2 0lne T e T−
∂ = ∂ . (7.138) 

Assuming the change in the tension field is less than unity results in a negative logarithm 
and an orthogonal (imaginary) sense to the transverse fields, giving us 

 ( )
1
21

2 0 2 0 01 531584394ln . ...ie T e T i T
−−∂ = ∂ = ∂ . (7.139) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




